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Elements of the Theory of Computation

Lesson 1
1.1. Sets

1.2. Relations and functions
1.3. Special types of binary relations

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com
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Subject information

• Lecturer: Dr. István Heckl, Istvan.Heckl@gmail.com
• http://oktatas.mik.uni-pannon.hu/

– registration
– course: Theory of the elements of computation
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Subject information

• Exercise book:
– the whole lecture should be written down
– use exercise book (not sheets) and pen
– number each page
– write date, lecture number, signature for each lecture
– each lecture should start on a new page
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Subject information

• Subject code: 
– VEMISA3244D 

• Signature: at least 50% result at ZH
• Subject name in Hungarian: A digitális számítás elmélete
• Literature: Harry R. Lewis, Christos H. Papadimitriou: 

Elements of the Theory of Computation, Prentice Hall, 
Inc., 1998. (second edition)
– this presentation is based on this book

• Irodalom: Bach Iván, Formális nyelvek
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Subject information

Theory of the 
elements of 
computation

Programming I.

Programming II.

Compilers

Computer 
architectures

Foundations of 
Programming

Foundations of 
Computer Science

Advanced 
Programming 
Techniques

Software 
Engineering

Java Programming

Data Structures 
and Algorithms

Project Laboratory

Advanced 
System Design
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Scope

• The theory of computations tries to answer the question: 
what is an algorithm?
– algorithm theory examine given algorithms
– we would like to know what is algorithm in general
– e.g.:
input x

while x > 10

x = x – 3

end
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Scope

• Does it halt?
input x

x = x * 2

while x is even

x = x * 2

end

• Does it halt?
input x

repeat 

if x is even x = x /2

else x = x*3+1

until x > 1
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Scope

• Any algorithm can be seen as a language
– the words of a language: (input1, output1), 

(input2, output2), ...
– a language can be recognized by an automata
– we keep learning more and more complex classes of 

languages
• The subject

– shows how automata (e.g.: computers) work
– is the basis for writing compilers

• e.g.: C++ compiler
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Scope

• ADC (Automata Drawing and Converting Tool) can be 
found in the Moodle 
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Scope

• We need exact terms for languages, grammars, 
computation, algorithms, ...
– no exact term for algorithms

• We need to know what the unsolvable problems are, 
what the very hard problems are, what problems can be 
solved easily
– halting problem is unsolvable
– traveling salesman is NP complete
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Scope for programmers

• Simple decisions: based solely on inputs
– e.g.: if the outside temperature is lower than 6 °C I 

take a hat
– there can be many inputs

• Complex decisions: based on inner state and on inputs
– e.g.: the outside temperature is lower than 6 °C but I 

also know that dad will take me to school by car so I 
do not take a hat
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Onion diagram of topics
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Content: Introduction

1. Sets, Relations and functions, Special binary relations
2. Finite and infinite sets, Three fundamental proof 

techniques, Closures and algorithms
3. Alphabets and languages, Finite representations of 

languages
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Content: Finite automaton

4. Deterministic finite automata
5. Non-deterministic finite automata
6. Finite automata and regular expressions, Languages 

that are and are not regular



Content: Context-free languages

7. Context-free grammars
8. Pushdown automata
9. Pushdown automata and context-free grammars,

Languages that are and are not context free
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Content: Turing machines

10. The definition of a Turing machine
11. Computing with Turing machines
12. The Church-Turing thesis, Universal Turing machine, 

The halting problem
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Introductions 1

• Boolean algebra
• Sets
• Sets operations
• Relations and functions
• Special types of binary relations
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• Statements can be: true or false
• Examples:

– the word "watermelon" has more e than o: true
– the word "watermelon" starts with z: false

• George Boole (1815-1864)
– English mathematician and philosopher
– the inventor of Boolean logic, the basis of modern 

digital computer logic

Boolean algebra
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Boolean algebra

• Boolean operators:
– combines two statements or modify a single 

statement
– and, or, not, xor, xand (=), nor, nand, implication
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Boolean algebra

a b ~a and or xand, 
=

xor, 
^ nand nor impl, 

→

0 0 1 0 0 1 0 1 1 1

0 1 1 0 1 0 1 1 0 1

1 0 0 0 1 0 1 1 0 0

1 1 0 1 1 1 0 0 0 1



Boolean algebra

• Symbols:
– a = blue-eyed
– b = long-haired
– c= blonde

• Formulate your statement: 
– S1 = b or (a and c)
– S2 = a and b and c
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a b c

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

S1

0

0

1

1

0

1

1

1

S2

0

0

0

0

0

0

0

1
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Sets

• Description of set: collection of objects
– collection = set
– objects = elements
– e.g.: L = {a, b, c, d}, S = {colors}

• Sets do not contain repetitions of elements
– {red, blue, red} is not a proper set

• Order of elements is unimportant
– {1, 3, 9} = {9, 3, 1} = {3, 1, 9}

• Elements can be sets too:
– {2, red, {blue, d}}

• Automata are defined with sets
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Sets

• A set can be specified:
– listing all its elements

• infinite sets cannot be defined in this way
• e.g.: M = {xx, yy, zz}

– giving a property which holds for every element
• such property does not always exist
• e.g.:

– K = {x  N : x is not divisible by 2}
– A = {words, that contain 'a'}



Version 47
25

Nomenclature

• Sets:
– b L:

• b is an element of set L
– z L:

• z is not an element of set L
– |L|  is the cardinality of set L

• Definition:
– read '→' as then
– read ',' as and
– read '↔' as if and only if

a, b,
c, d

set L
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Sets

• Two sets are equal:
– if and only if they have the same elements

• Definition of singleton: a set with one element
– |L| = 1
– e.g.: L = {a}

• Definition of empty set: a set with no element 
– |L| = 0
– e.g.: L = Ø or L = {}
– beware: Ø = {} ≠ { {} }

A B
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Sets

• Neumann onions:
– 0 = {}
– 1 = { {} }
– 2 = { {{}} }
– ...

• János Neumann (1903 –1957)
– Hungarian mathematician

Ø
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Sets

• Definition of subset: A is the subset of B, if each element 
of A is also in B
– notation: A  B

• Properties:
– any set is subset to itself
– if A  B, A ≠ B → A is a proper subset of B

• notation: A  B
– A = B ↔ A B, B A
– Ø is the subset of every set

BA
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Sets

• Give an algorithm for checking if x is an element of A!

elementTest(x, A)

for i = 0 to |A|-1

if A[i] == x

return true

return false 



Sets

• True or false
– 5  {5, 6, 7}
– 6  {5, 7, 9}
– {5, 6}  {5, 6, {5, 6}}
– {5, 6}  {5, 6, 7}
– a  {{a}}
– {a, b}  {a, b}
– {a, b}  {a, {a, b}, b}
– Ø  Ø
– Ø  {Ø}
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Sets

• Give an algorithm for checking if A is a subset of B!

subsetTest(A, B)

for i = 0 to |A|-1

if elementTest(A[i], B) == false

return false

return true 



Sets

• True or false
– {5, 6}  {5, 6, 7}
– {6, 8}  {5, 6, 7}
– {a, b}  {a, b}
– {a, b}  {a, b, {a, b}}
– a  {a, b, {a, b}}
– Ø  Ø
– Ø  {Ø}
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Set operations

• Definition of union: a set which contains all the elements 
of two sets
– A  B = {x : x A or x B}
– e.g.:

• {red, green}  {blue} = {red, green, blue}
• {1, 3, 9}  {3, 5, 7} = {1, 3, 5, 7, 9}

– an important property: the finite automata is closed 
under the union operation
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Set operations

• Definition of intersection: a set which contains the 
elements which are common in two sets
– A B = {x : x A and x B}
– e.g.:

• {1, 3, 9}  {3, 5, 7} = {3}
• {red, green}  {blue} = Ø
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Set operations

• Definition of difference between A and B: a set which 
contains all elements of A that are not in B
– A \ B = {x : x A and x B}
– e.g.:

• {1, 3, 9} \ {3, 5, 7} = {1, 9}
• {red, green} \ {blue} = {red, green}



Version 47
36

Set operations

• Definition of disjoint sets: sets with no common element
– A B = Ø
– e.g.: 

• A = {1, 4, 33}, B = {2, 6, 12}
• A = {dogs}, B = {cats}

• Definition of complementer set:
– AC = {x: x is element of base set, but x is not element 

of A}
– e.g.: B = {1, 3, 5}, A = {1, 3}, A  B and AC= {5}

B
A



Set operations

• Set operations with more than two sets:
– L: the set, whose elements are the elements of the 

sets in L
• L = {{a, b}, {b, c}, {c, d}} 
• L = {a, b}  {b, c}  {c, d} = {a, b, c, d}

– L: the set, whose elements are the common 
elements of the sets in L

• L = {{a, b}, {b, c}, {b, d}} 
• L = {a, b} {b, c}  {c, d} = {b}
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Set operations

• Questions:
– A = {1, 3, 5, 6, 7}
– B = {2, 3, 4, 5, 7}

– A B = {3, 5, 7}
– A  B = {1, 2, 3, 4, 6, 7}
– A \ B = { 1, 4, 6}
– (A \ B)  (A  B) =
– (A \ B) (A  B) = 

A
A \ B
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Set operations

• Properties of the set operations:
– idempotency: A A = A; A  A = A

• for unary operator it means: f(f(A))=f(A)

– commutativity: A  B = B  A; A  B = B  A
– associativity: (A  B)  C = A  (B  C);

(A  B)  C = A  (B  C)

– distributivity: A  (B  C) = (A  B)  (A  C)
A  (B  C) = (A  B)  (A  C)

– absorption: A  (A  B) = A; A (A  B) = A
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Set operations

• Properties of the set operations:
– De' Morgan's Laws:

(A B) = Aഥ  Bഥ
(A B) = Aഥ  Bഥ

• The proof will use it which says that NFA is closed under 
intersection

• Augustus De Morgan (1806 –1871)
– British mathematician and logician
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Set operations

• Definition of power set: collection of all subsets of a set
– P(A), 2A

– |P(A)| = 2|A|

– e.g.: 
• P(Ø) = {Ø}
• P({a}) = {Ø, {a}}
• P({b, c}) = {Ø, {b}, {c}, {b, c}}
• P({d, e, f}) = {Ø, {d}, {e}, {f}, {d, e}, {d, f}, {e, f}, {d, e, f}}
• P({g, h, i, j}) = {Ø, {g}, {h}, {i}, {j},

{g, h}, {g, i}, {g, j}, {h, i}, {h, j}, {i, j},
{g, h, i}, {g, h, j}, {g, i, j}, {h, i, j}, {g, h, i, j}}
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Set operations

• Definition of partition: Π is a partition of A if
– Π  P(A)
– Ø  Π
– the members of Π are disjoint
– Π = A

2
1

3 54

76

9

8

10
11

13
12

1415

1617
18

19
20
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Set operations

• Example for power sets:
– P({a, b, c}) = { Ø, {c}, {b}, {a}, {a, b}, {a, c}, {b, c}, {a, b, c} } 

a b c P({a, b, c})
0 0 0 Ø
0 0 1 {c}
0 1 0 {b}
0 1 1 {b, c}
1 0 0 {a}
1 0 1 {a, c}
1 1 0 {a, b}
1 1 1 {a, b, c}
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Set operations
• Examples for power sets

– P(Ø) = {Ø}
– P({Ø}) = { Ø, {Ø} }
– P({Ø, {Ø}}) = { Ø, {Ø}, {{Ø}}, {Ø, {Ø}} }

• True or false
– Ø  P(Ø)
– Ø  P(Ø)
– {a, b}  P({a, b})
– {a, b}  P({a, b})
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Set operations

• Examples for operation with sets:

– ({1, 3, 5}  {3, 1})  {3, 5, 7} =
= {1, 3, 5}  {3, 5, 7} =
= {3, 5} 

– ({1, 2, 5} \ {5, 7, 9})  ({5, 7, 9} \ {1, 2, 5})=
= {1, 2}  {7, 9} =
= {1, 2, 7, 9}
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Set operations

• Examples for operation with sets:

– {3, 5} {3, {3, 5}, {7}}  ( {{1, 2, 3}, {2, 3, 4}}) =
= {3, 5, {3, 5}, {7}}  {2, 3} =
= {2, 3, 5, {3, 5}, {7}}

– P({2, 3, 5}) \ P({3, 5}) =
= {{2}, {2, 3}, {2, 5}, {2, 3, 5}}
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Relations and functions

• Definition of ordered n-tuple: (a1, …, an) an object made 
of other objects, a1, … an, where the order of the 
components is important

• Ordered 2-, 3-, 4-, 5-, 6-tuples are called
– pairs, triples, quadruples, quintuples and sextuples
– context free languages are quadruples

• n-tuples can be defined with sets
– e.g.: (a, b) = {{a}, {a, b}}

• Properties:
– the order matters: (a, b) ≠ (b, a)
– (a, b) = (c, d) ↔ a = c, b = d



Version 47
48

Relations and functions

• Definition of Cartesian product:
– A×B = {(a, b) : a A, b B}
– e.g.: {1, 3} × {b, c}={(1, b), (1, c), (3, b), (3, c)}

• n-fold Cartesian product A1×…×An: {(a1, ..., an) : ai Ai} 
– if A1 = A2 =  An → A1×…×An = An

– e.g.: N×N = N2

• René Descartes (1596 –1650)
– French mathematician 
– latinized form: Renatus Cartesius
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Relations and functions

• Examples for Cartesian product:
– {1, 3, 9} × {b, c, d} = 

= {(1, b), (1, c), (1, d), (3, b), (3, c),
(3, d), (9, b), (9, c), (9, d)}

– {1} × {1, 2} × {1, 2, 3} = 
= {(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 2, 3)}

– P({1, 2}) × {1, 2} = 
= {Ø, {1}, {2}, {1, 2}} × {1, 2} =
= {(Ø, 1), (Ø, 2), ({1}, 1), ({1}, 2), ({2}, 1), 

({2}, 2), ({1, 2}, 1), ({1, 2}, 2)}
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Relations and functions

• True or false:
– (a, b)  {(a, b)} × {a, b}
– {a, b}  {b, a} × {b}
– {a, b}  {a} × {b}
– (a, b)  {a} × {b}
– {(a, b)}  {a} × {b}
– {a, b}  {a} × {b}

= {((a, b), a), ((a, b), b)}

= {(a, b)}
= {(b, b), (a, b)}

= {(a, b)}
= {(a, b)}
= {(a, b)}
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Relations and functions

• Definition of binary relation R on sets A and B:
– a subset of A×B
– e.g.: less than relation

• A=B=N, R = {(i, j) N2 : i<j} = {(0, 1), (0, 2), (0, 3), (0, 
4), ..., (1, 2), (1, 3), (1, 4), ... }

• (a, b) R  ↔  a < b

A
B
C
D

1
2
3
4
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Relations and functions

• N-ary relation is a subset of A1×…×An

– R = {(a, A, 1), (a, A, 2), (b, B, 4), (b, C, 3), ...}

a  b  c  d

A  B C  D

1  2  3  4
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Relations and functions

• Definition of inverse of binary relation R-1 :
– R-1 = {(b, a) :(a, b)  R}
– R A×B binary relation
– e.g.: R-1 = {(1, A), (2, A), (2, B), (3, C), (4, C)}

A
B
C
D

1
2
3
4
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Relations and functions

• Definition of function, f: A → B: f A×B (f is a relation)
where for  a  A,  exactly one pair in f with first 
component 'a'
– (a, b)  f ↔ f(a) = b
– an association of each element of set A with an 

element of set B
• A: domain of f
• f(a) is the image of 'a' under f
• range: the image of the domain

A
B
C
D

1
2
3
4

A B
f
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Relations and functions

• R = {(x, y) : x  C, y  S, x is a city in state y}
– is a function, C → S

• R = {(Pest, HU), (Szeged, HU), (Austin, USA), ...}
• R(Pest) = HU, R1(Szeged) = HU, ...



Relations and functions

• R-1 = {(y, x) : x  C, y  S, x is a city in state y}
– is not a function, S → C

• R-1 = {(HU, Pest), (HU, Szeged), (USA, Austin), ...}
– but F: S → P(C) is a function

• F(HU) = {Pest, Szeged, ...}, ...

Version 47
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Relations and functions

• Function with multiple arguments: f(a1 , …, an) = b
– a1 , … , an are the arguments of f
– b is the value of f
– we can write f((a1 , … , an)) = b

• or define functions with multiple arguments
• The transition of a DFA is defined by a function 

(state, letter) → new state
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Relations and functions

• Properties of f: A → B:
– one-to-one or injective: if a ≠ a' → f(a) ≠ f(a')

• every element of B is mapped to at most one 
element of A

• e.g.: S = {states}, C = {cities} 
f: S → C; f(s) = capital of state s

A
B
C

1
2
3
4

A B
f

A
B
C

1
2
3

A Bf
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Relations and functions

– onto or surjective function:
• every element of B is mapped to at least one 

element of A
• e.g.: C = {cities}, S = {states} 

f: C → S; f(c) = state of city c

A
B
C
D

1
2
3

A B
f

A
B

1
2
3

A Bf
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Relations and functions

– one-to-one correspondence or bijective function:
• every element of B is mapped to exactly one 

element of A 
– one-to-one and onto function also

• e.g.: S = {states}, C = {capital cities} 
f: S → C; f(s) = capital of state s

A
B
C
D

1
2
3
4

A Bf

A
B
C

1
2
3

A Bf
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Relations and functions

• Questions: injective, surjective, or bijective

– g: {vehicle type} → {car brand} 

– h: {people} → {fingerprints of people}

– i: {ID card} → {people}

– j: {wives} → {husbands}

injective

bijective

surjective, injective

bijective in ideal case
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Special types of binary relations

• A binary relation R  A×A can be represented in a 
directed graph
– each elements of A are represented by a node
– an arc is drawn from a to b if (a, b)  R
– e.g.: R={(a, b), (a, d), (b, a), (c, a), (d, c)}
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Special types of binary relations

• Properties of binary relations R  A×A:
– reflexive: (a, a)  R for all a  A
– e.g.: {(a, b) : a ≤ b}
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Special types of binary relations

• Properties of binary relations R  A×A:
– symmetric: if (a, b)  R → (b, a)  R

• there are arcs in both directions between the nodes
• a single undirected arc can be used
• e.g.: {(a, b) : a is a friend of b}
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Special types of binary relations

• Properties of binary relations R  A×A:
– anti-symmetric: if (a, b)  R, a ≠ b → (b, a)  R

• e.g.: P = set of all persons, {(a, b) : a, b  P, 'a' is 
the father of b}
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Special types of binary relations

• Properties of binary relations R  A×A:
– transitive: if (a, b), (b, c)  R → (a, c)  R

• e.g.: {(a, b) : a, b  P, a is an ancestor of b}

a d

b c



Special types of binary relations

• Which properties are true?
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– reflexive
– anti-symmetric



Special types of binary relations

• Which properties are true?
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– reflexive
– symmetric
– transitive

a d

b c

– anti-symmetric
– transitive
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Special types of binary relations

• Properties of binary relations R  A×A:
– equivalence relation: R is reflexive, symmetric, and 

transitive
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Special types of binary relations

• R consists clusters
– the clusters are not connected
– within a cluster every node is connected

• the clusters are called equivalence classes
• e.g.: {(a, b) : a = b}, each class is a singleton
• this will be used at algorithm complexity
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Special types of binary relations

• Properties of binary relations R  A×A:
– partial order: R is reflexive, anti-symmetric, transitive

• e.g.: {(a, b): a, b are persons, a is an ancestor of b}
– total order: R is partial order and either (a, b)  R or 

(b, a)  R
• Theorem: If R is an equivalence relation on a set A → 

the equivalence classes of R constitute a partition of A



Summary

• Introduction, Scope, Content
• Basic: Boolean algebra and notation
• Sets, Power sets, Descartes product
• Relations and functions
• Special type of binary relations
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Next time
• Finite and infinite sets
• Three fundamental proof techniques
• Closures and algorithms
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Elements of the Theory of Computation

Lesson 2
1.4. Finite and infinite sets

1.5. Three fundamental proof techniques
1.6. Closures and algorithms

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com



Last time

• Boolean algebra
• Sets
• Sets operations
• Relations and Functions
• Special types of binary relations
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Introductions 2

• Finite and infinite sets
• Three fundamental proof techniques

– Mathematical induction
– The Pigeonhole principle
– Diagonalization principle

• Algorithm complexity
• Reflexive, transitive closure
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Finite and infinite sets

• The cardinality of set: the number of elements in it
– this definition is problematic with infinite sets

• Definition of equinumerous: set A and B is called 
equinumerous if there is a bijection f: A → B
– e.g.: A = {8, red, {Ø, b}}, B = {1, 2, 3} 

f(8) = 1; f(red) = 2; f({Ø, b}) = 3

A
B
C

a
b
c
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Finite and infinite sets

• Definition of finite set: the set is equinumerous with 
{1, 2, … , n} , n  N
– A is a finite set, if  bijection f: A → {1, 2, …, n}

• Definition of infinite set: a set that is not finite
– e.g.: N, R
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Finite and infinite sets

• Definition of countably infinite set: equinumerous with N
– the set can be listed using ... only once
– e.g.: Z

• there is as much integer as much positive integer
• Definition of countable: finite or countably infinite
• Definition of uncountable: a set that is not countable

– e.g.: R
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Finite and infinite sets

• Theorem: the union of finite number of set, each set is 
countably infinite, is also countably infinite

• Proof: 
– a bijection must be given
– a clever listing of the elements of the sets is needed
– e.g. for set A, B, and C
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Finite and infinite sets

• Theorem: the Cartesian product of finite number of set, 
each set is countably infinite is also countably infinite
– it is the union of countably infinite number of set, each 

set is countably infinite
• Proof: 

– a bijection must be given
– a clever listing of the elements 

of the sets is needed
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Finite and infinite sets

• Questions:
– {number of divisor of a}

a  N

– {words}

– {points in the coordinate system}

countable - finite

countable - infinite

uncountable - infinite
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Three fundamental proof techniques

• Mathematical induction

• The Pigeonhole principle

• Diagonalization principle
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Mathematical induction

• Idea:
– if for set A the following are true:

• A  N
• 0  A
•  n  N, if n  A → n+1  A

– then A = N
• Intuitive proof: if the conditions are true for A: A can be 

increased one element at a time
– {0}, {0,1}, {0,1, 2}, ...
– the series converges to N

• NFA to DFA conversion 
uses it
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Mathematical induction

• We would like to show that property P is true for  n  N
– basis step: we show that for 0 P is true
– induction hypothesis:

• for some n P is true
– induction step: 

• we prove that P is true for n+1 if P is true for n
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Example

• Theorem:
• Proof:

– basis step: n = 0
• the sum on the left is zero, there is nothing to add
• the expression on the right is also zero

– induction hypothesis:

2
0,1 2

2
n nn n 

    

2
0,1 2

2
n nn n 

    
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Example

• Proof:
– induction step:
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The pigeonhole principle

• Theorem: the Pigeonhole principle: if A and B are finite 
sets and |A| > |B| → there is no one-to-one function 
f: A → B
– there will be a pigeon without pigeonhole

• Proof by induction for |B|:
– basis step: n = 0 → B = Ø, f (with any property) does 

not exist
– induction hypothesis: for |B| = n there is no 

one-to-one f
• f: A → B, |A| > |B|, |B| = n, n 0
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The pigeonhole principle

– induction step: |B| = n+1, proof by indirection
• suppose  one-to-one f: A → B, |A| > |B|
• choose some a  A
• if  a'  A, f(a) = f(a') → f is not one-to-one → 

contradiction
• else construct g: A-{a} → B-{f(a)} such that f=g 

except at 'a'
• the induction hypothesis is true for g, so g does not 

exist, consequently, neither does f → contradiction
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The pigeonhole principle

Original 
problem
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The pigeonhole principle

• Theorem: 
– R is a binary relation on finite set A, a, b  A
– if there is a path from 'a' to b in R →  such a path 

whose length is at most |A|

a x c

y z

d e b

A
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The pigeonhole principle

• Proof by indirection:
– suppose the shortest path from 'a' to b is

(a=a1, a2, ..., an=b) and n>|A|
– function f: {1, 2, ... n} → A, f is no one-to-one 

according to the pigeonhole principle
• e.g.: f = {(1, a1), (2, a2), ...} 

– if f is no one-to-one →  ai = aj (i<j)
– (a1, a2, ..., ai, aj+1, ... an) is a shorter path than the 

original (omit the nodes between ai, aj), contradiction 
is reached 



The pigeonhole principle

• If there is a path between 'a' to b → in the worst case 
you travel through each node once
– if you travel through a node (a2) twice then you can 

shorten the path by cutting the loop

Version 47
92a2 a3

a4a1
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Diagonalization principle

• Theorem, Diagonalization principle:
– if

• R is binary relation on set A 
• D is diagonal set for R

– D = {a : a  A, (a, a)  R}
• for each a  A, Ra = {b : b A, (a, b)  R}

– then D is distinct from each Ra

• Proof: Rc differs from D in terms of c
– if (c, c) R → c  D, c Rc

– if (c, c) R → c  D, c Rc

– c is selected arbitrary



Version 47
94

Diagonalization principle

• Halting problem uses the diagonalization principle
• Visualization:

– if A is finite, R is pictured as an array
– rows and columns are labeled with the elements of A
– if (x, y)  R → square (x, y) is checked in the array 
– D: complementary of the diagonal of the array:
– Ra: corresponds to the row 'a' of the array
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Diagonalization principle

• Diagonalization principle in other words: the complement 
of the diagonal is different from each row 

• The Diagonalization principle also holds for infinite sets
• D, Ra are sets but an ordering can be introduced based 

on the next figure
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Diagonalization principle

a b c d e f
a x x

b x x

c x

d x x x x

e x x

f x x x x

x x x

x x x

R relation (a, a)  R

(a, a)  R



Diagonalization principle

• Questions: • R = {(a, b), (a, d), (b, b),
(b, c), (c, c), (d, b), (d, c),
(d, e), (d, f), (e, e), (e, f),
(f, a), (f, c), (f, d), (f, e)}

• Ra =
• Rb =
• Rc =
• Rd =
• Re =
• Rf =

Version 47
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a b c d e f
a x x

b x x

c x

d x x x x

e x x

f x x x x

{b, d}
{b, c}
{c}
{b, c, e, f}
{e, f}
{a, c, d, e}
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Diagonalization principle

• Theorem: P(N) is uncountable
• Proof by indirection:

– suppose P(N) is countably infinite
• there is a way to enumerate all the subsets of N 

P(N) = {R1, R2, ...}
• e.g.: R1 = {1}, R2 = {1, 2}, R3 = {2, 3}, R4 = {1, 2, 3}, 

R5 = {3, 4}, R6 = {2, 3, 4}, ...
– build relation R 

• R1 should be the 1st row, R2 the 2nd , and so on
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1 2 3 4 5
R1 x

R2 x x

R3 x x

R4 x x x

R5 x x

R6 x x x

R relation

Diagonalization principle
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Diagonalization principle

– let D = {n : (n, n)  R}
• e.g.: D = {1, 6, ....}

– D is a set of natural numbers 
• according to its definition

– D is not a set of natural numbers
• according to the diagonalization principle there is 

no i  N such that D = Ri

• Ri’s are all the possible subsets of N
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• Definition of the complexity of an algorithm: f(n) is an 
upper bound on the number of elementary steps 
required for the algorithm if the size of the input is n
– average number cannot be used because it requires 

a known distribution for the inputs

Algorithm complexity
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• Definition of order of  f, O(f):
– let f: N → N
– O(f) is a set of such functions which increase at most 

as fast as f disregarding some constants (informal)
– for  g  O(f), g: N → N

•  c ≥ 0, d ≥ 0 constants such that for  n  N, 
g(n) ≤ c·f(n)+d

• e.g.: O(n3) = {n, n+1, n+2, ..., 2n, 2n+1, ..., n2, ..., 
n3, ...}

Algorithm complexity
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• Definition of relation f  g: f, g: N → N, f  O(g), g  O(f)
–  is an equivalence relation of the N → N functions

• reflexive: f  O(f), with constants 1 and 0
• symmetric: the roles of f and g are interchangeable
• transitive

• The N → N functions are partitioned by  into 
equivalence classes

• Definition of rate of growth of f: the equivalence class of f 
with respect to the  relation

Algorithm complexity
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• f(n) = 31n2 + 17n + 3
– is it true that f(n)  O(n2)? (i.e., f(n) ≤ cn2+d)

• notice n2 ≥ n; f(n) ≤ 31n2 + 17n2 + 3 = 48n2 + 3
• c=48, d=3

– is it true that n2  O(f) ?
• yes, with c=1, d=0

– hence n2  31n2 + 17n + 3, so the two functions have 
the same rate of growth

Example
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• Let f(n) = 10n2 + 5n+7
– is it true: f(n)  O(n2)
– f(n) = 10n2 + 5n+7 < 10n2 + 5n2+7 = 15n2 + 7
– f(n)  c * n2 + d

• c = 15, d = 7

Example
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• f(n) = adnd + ad-1nd-1+…+a1n+a0 , ai ≥ 0 for  i, ad>0
– f(n)  O(nd)
– all polynomials of the same degree have the same 

rate of growth

Example
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• Lemma: for  n  N, n ≤ 2n

• Proof:
– basis step: 0 ≤ 20 = 1
– induction hypothesis: suppose that n ≤ 2n

– induction step: n+1 ≤ 2n+1  ≤ 2n +2n = 2n+1

• add 1 to both sides
• replace 1 with 2n on the right side, 1 ≤ 2n

Algorithm complexity



Algorithm complexity

• Theorem: for  i  N, ni  O(2n)
• Proof:

– ni ≤ c2n + d
• c=(2i)i, d=(i2)i

– if n ≤ i2 

• ni ≤ (i2)i, use the power function
– (i2)i =d, see definition of d

• ni ≤ d
• ni ≤ c2n + d, the added term is positive

– for small n the d in c2n + d makes sure that ni is 
smaller
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108



Version 47
109

– if n ≥ i2

• let m = n / i → m*i ≤ n < (m+1)*i
• n < i·(m+1) 
• ni ≤ ii·(m+1)i ≤ ii·(2m+1)i (because of the lemma)
• ni ≤ ii·(2m+1)i = ii·(2·2m)i = (2·i·2m)i = (2i)i·2mi = c·2mi ≤ 

c2n ≤ c2n + d
– for large n the c makes sure that ni is smaller
– the rate of growth of any polynomial is no faster than 

2n

Algorithm complexity
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Algorithm complexity

• Theorem: for  i  N, 2n  O(ni)
– 2n does grow faster than ni

• Proof by indirection:
– suppose 2n  O(ni) for  i  N 
– ni  O(2n), see the previous theorem
– 2n  O(ni), ni  O(2n) → ni  2n

– select i1 ≠ i2
– ni1  2n, ni2  2n → ni1  ni2

• transitive property of 
– ni1  ni2 is not true, contradiction
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Reflexive, transitive closure

• Definition of "reflexive, transitive closure of R" = R*:
– let R  A2 be represented by a directed graph 

defined on a set A
– R* is the smallest relation that contains R and is 

reflexive and transitive 
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• Algorithm 1 for determining R*:
R* := 0

for i=1, …, n do

for each i-tuple (b1, …, bi)  Ai do 
if (b1, …, bi) is a path in R → 

add (b1, bi) to R*

• Informal definition of algorithm:
– sequence of instructions that produces a result
– halt after a finite number of steps

Reflexive, transitive closure
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• The operation of the algorithm:
– initially R* is empty
– all paths of R (with all the possible length) are 

considered
– for each path a direct connection is added to R*

Reflexive, transitive closure
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• Complexity of the algorithm 1:
– the input size is IAI = n
– number of i-tuples if IAI = n: ni

• e.g.: IAI = 10, number of 5-tuples: 105

– number of steps to check if an i-tuple is a path: n
– f(n) = n*(1+n+n2+…+nn)
– f  O(nn+1) 

• nn+1 has even higher rate of growth than 2n

• this algorithm is not efficient

Reflexive, transitive closure
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• Algorithm 2 for determining R*:
R* := R  {(ai, ai) : ai  A}

for all (ai, aj, ak)  A3

if (ai, aj),(aj, ak)  R*, (ai, ak)  R* → 
add (ai, ak) to R*, restart

• R* will certainly contain R, and it will be reflexive

Reflexive, transitive closure
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• Complexity of the algorithm 2:
– the add statement is executed at most n2 times
– after each addition the search for a suitable triplet 

must be restarted, there are n3 triplets
– f(n) = n5

Reflexive, transitive closure
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Example

• Visiting order of the triplets: (a1, a1, a1), (a1, a1, a2),  ..., 
(a1, a1, a4), (a1, a2, a1), (a1, a2, a2), ..., (a4, a4, a4)

• First violation at (a1, a4, a3)
– new edge: (a1, a3)

• If the search is not restarted → the next violation at 
(a1, a3, a2) is missed
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• Algorithm 3 for determining R*: 
R* := R  {(ai, ai) : ai A}
for j=1, 2, …, n do

for i=1, 2, …, n, k=1, 2, …, n do

if (ai, aj), (aj, ak)  R* → 
add (ai, ak) to R*

Reflexive, transitive closure
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• Algorithm 3 for determining R*: 
– this is a modification of algorithm 2
– it searches the triplets in such an order that the newly 

added arcs do not introduce such violation which 
cannot be rectified later

• restart is not needed
– f(n) = n3

Reflexive, transitive closure
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Example

• Visiting order of the triplets: (a1, a1, a1),..., (a1, a1, a4), 
(a2, a1, a1), ..., (a2, a1, a4),..., (a1, a2, a1), ..., (a4, a4, a4)

• First violation: (a4, a3, a2)
– new arc: (a4, a2)

• The new violation, (a1, a4, a2), will be dealt with later
• Last violation: (a1, a4, a3)
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• Definition of the rank of a path (ai0, ai1, ..., aik): the largest 
integer among i1, ..., ik-1 (the indexes of the inner nodes)
– trivial path: a single arc, rank = 0, no inner node

• Theorem: the jth iteration adds those pairs to R* that are 
connected in R by paths of rank j
– in other words: after the jth iteration, R* contains all 

pairs (ai, ak) which are joined by a path of rank j or 
less in R (we prove this)

– if j = n → the statement is: after the nth iteration (at the 
end) R* contains all pairs which are joined by a path 
of rank n or less (any path) in R

• it is the definition of R*

Reflexive, transitive closure
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Reflexive, transitive closure

• Proof by induction on j:
– basis step: j=0

• trivial paths of R are the arcs of R
• the arcs of R is already in R*

– induction step:
• select any nodes ai, ak which are connected by a 

path of rank j+1 
– they are also connected by such a path in 

which aj+1 appears exactly once
– if aj+1 appears more than once → delete the 

portion of the path between the first and last 
occurrences
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Reflexive, transitive closure

• paths (ai, ..., aj+1) and (aj+1, ..., ak) have rank j or 
less

– the algorithm regard triplets and not paths
• (ai, aj+1), (aj+1, ak)  R* according to the induction 

hypothesis
– these arcs are added in a previous iteration

• we add (ai, ak) to R* according to the algorithm, so 
now R* contains all pairs (ai, ak) which are joined 
by a path of rank j+1 or less
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Set closed under a relation

• Definition of set A is closed under relation R:
– let

• D set
• n ≥ 0
• A  D
• R  Dn+1 an (n+1)-ary relation

– R is called the closure property of set A, R does 
not go out from A

– if  (b1,…, bn+1)  R, b1,…, bn  A, → bn+1 A
• If R is a function then R(b1,…, bn) = bn+1

• The result is in the same set as the parameters



Version 47
126

Example

• Natural numbers are closed under addition
– D=Z, A=N, n=3, R={..., (0, -1, -1), (0, 0, 0), (0, 1, 1), 

... , (3, 4, 7), ...}
– the sum of two natural number is also a natural 

number
• Natural numbers are not closed under subtraction

– D=Z, A=N, n=3, R={..., (0, -1, 1), (0, 0, 0), (0, 1, -1), 
... , (3, 4, -1), ...}

– the difference of two natural numbers is not always a 
natural number
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Closures

• Theorem: Let A  D, R  Dn+1 an (n+1)-ary relation, 
there is a unique minimal (in terms of cardinality) set A* 
such that A  A*, and A* is closed under R
– A* is called the closure of A under R
– "set A is closed under R" is a property of set A
– "R closure of set A" is a set operation of A

• A can be any set, e.g., a relation
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Closures

• There are several possible closures, and there are 
polynomial algorithms for computing all of these closures
– conversely any polynomial algorithm can be 

interpreted as the computation of the closure of a set 
under some relation
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Closures

• R is a relation, R  Dr+1, A  D
• Computation of A* under R
A* := A

while  elements aj1, ..., ajr  A*, 
ajr+1  A*, and (aj1, ..., ajr, ajr+1) R

add ajr+1 to A*
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Closures

• Transitivity:
– let A  D × D 

• A can be seen as a relation and as a set (of arcs)
– R = {((a, b), (b, c), (a, c)) : a, b, c  D}

• all possible transitive triplets
• R  (D × D)3, ternary relation

– A is closed under R ↔ A is transitive 
– A* is completed by adding the 3d component of R 

which is calculated from the first and second ones
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Closures

• Reflexivity:
– let A  D × D 

• A can be seen as a relation and as a set (of arcs)
– R = {((a, a)) : a  D}

• all possible loop
• R  (D × D), unary relation: relates nothing with 

(a, a)
– A is closed under R ↔ A is reflexive
– A* is completed by adding the first component of R 

which is calculated from nothing
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• A binary relation is given on D × D, give the closure of 
set A on this relation!
– D = {d1, d2, d3, d4}
– A = {d4}
– (d4, d3)  R, d4  A* → d3  A*
– (d3, d2)  R, d3  A* → d2  A*
– A* = {d2, d3, d4}

Examples

d3

d1 d2

d4



Summary

• Finite and infinite sets
• Mathematical induction
• The Pigeonhole principle
• Diagonalization principle
• Algorithm complexity
• Reflexive, transitive closure
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Next time
• Alphabets and languages
• Finite representations of languages
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Elements of the Theory of Computation

Lesson 3
1.7. Alphabets and languages

1.8. Finite representations of languages

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com



Last time

• Finite and infinite sets
• Mathematical induction
• The Pigeonhole principle
• Diagonalization principle
• Algorithm complexity
• Reflexive, transitive closure
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Alphabets and languages

• Alphabets, strings, and languages
• Finite representation of language
• Regular expressions
• Properties of RE
• Regular languages
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Alphabets, strings, and languages

• Definition of alphabet, Σ: finite set of symbols
• E.g.:

– the Roman alphabet: {a, b, c,…, z}
– the binary alphabet: {0, 1}
– unary alphabet: {I}

• Definition of string: finite sequence of symbols from the 
alphabet
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Alphabets, strings, and languages

• Examples for strings:
– watermelon, water, chain are strings over the 

alphabet {a, b, c, …, z}
– 0111011, 1, 100, 0 are strings over the alphabet {0, 1}
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• Definition of empty string, e: string containing 0 symbol
– do not confuse with symbol e
– {e} ≠ Ø

• Definition of Σ*: the set of all strings over alphabet Σ
– in other words: all such string which can be created 

by using elements of Σ
– contains the e
– it is called sigma star
– w  Σ*, means any string from that alphabet

Alphabets, strings, and languages
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Alphabets, strings, and languages

• Definition of length of string, |w|: the number of letters in 
a string

• E.g.:
– |apple| = 5
– |101| = 3 
– |e| = 0
– |szpsz| = 5 in English
– |szpsz| = 3 in Hungarian

• w(j) is the jth letter in string w
– e.g.: w=fun, w(1)=f, w(2)=u, w(3)=n
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Alphabets, strings, and languages

• Definition of concatenation of two strings, x◦y: string 
operation resulting in a new string
– also denoted by: xy
– if w = xy
– then

• |w| = |x|+|y|
• w(j) = x(j), j=1, ... |x|
• w(|x|+j) = y(j), j=1, ... |y|
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Alphabets, strings, and languages

• Examples for concatenation:
– beach◦boy = beachboy
– 01◦001 = 01001
– w◦e = e◦w = w,  w Σ*

• Concatenation is associative: (wx)y = w(xy) 
– but not commutative
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• Definition of substring: v is a substring of w ↔  x, y 
such that w = xvy
– w, x, v, y  Σ*
– both x and y could be e, so every string is a substring 

of itself
– if w = vy, v is the prefix of w
– if w = xv, v is the suffix of w

Alphabets, strings, and languages
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• Definition of wi: w  Σ*, i  N
– w0 = e
– wi+1 = wi◦w, i ≥ 0
– e.g.: (re)1 = re, (do)2  = dodo

• Definition of the reversal of a string, wR:
– if |w| = 0, wR = w = e
– if |w| > 0 →  a  Σ, u  Σ* such that w = ua → 

wR = auR

– e.g.:
• (car)R = rac
• (A man a plan a canal Panama)R =

= A man a plan a canal Panama

Alphabets, strings, and languages

…
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• Theorem: for any strings w and x, (wx)R = xRwR

– e.g.: (walnut)R = (nut)R(wal)R = tunlaw
• Proof:

– basis step: IxI = 0 → x = e, and (wx)R = (we)R = wR = 
ewR = eRwR = xRwR

– induction hypothesis for n
• if IxI ≤ n → (wx)R = xRwR

Alphabets, strings, and languages



Version 47
146

Alphabets, strings, and languages

• Proof:
– induction step: IxI = n+1 → x = ua, u  Σ*, a  Σ, 

IuI = n
• (wx)R = (w(ua))R since x=ua
• = ((wu)a)R since concatenation is associative
• = a(wu)R by the definition of reversal of (wu)a
• = a(uRwR) by the induction hypothesis
• = (auR)wR since concatenation is associative
• = (ua)RwR by the definition of the reversal of ua
• = xRwR since x=ua
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• Definition of language, L: a set of strings over Σ
• Special languages:

– Ø: a language with 0 string
– Σ:  a language with |Σ| one letter strings
– Σ*: contains all possible string over Σ

Alphabets, strings, and languages
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• Defining languages:
– listing all its items, e.g.: L = {aba, czr, d, f} is a 

language over {a, b, c, ….., z}
– specify a property which is true for all strings in the 

language
• infinite languages can be defined in this way
• e.g.: L = {w  Σ* : w starts with ab}

Alphabets, strings, and languages
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• Definition of union of languages:
– L1  L2 = {w : w  L1 or w  L2}

• someone uses | instead of 
• Definition of concatenation of languages: 

– then L1◦L2 = {w  Σ* : w = x◦y, x  L1, y  L2}
• L1L2 also means the concatenation 

• An important property: finite automata are closed under 
union

Alphabets, strings, and languages
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Alphabets, strings, and languages

• L1L2 is similar to the Descartes product
– |L1L2|≤|L1|*|L2|

• E.g.:
– Σ = {a, b}, L1 = {a, aa}, L2 = {bb, a}
– L1L2 = {abb, aa, aabb, aaa}

• E.g.:
– Σ= {a, b}, L1 = {ab, a}, L2 = {a, ba}
– L1L2 = {aba, abba, aa}
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• Definition of Kleene star of a language, L*:
– L* = {w  Σ* : w = w1◦.....◦wk, k ≥ 0,w1, ……, wk  L}

• set of all strings obtained by concatenating zero or 
more strings from L

– the concatenation of zero strings is e and the 
concatenation of one string is the string itself

– L+ = LL*, L? = L  {e}
• Stephen Cole Kleene (1909 –1994)

– American mathematician
– helped to lay the foundations for theoretical computer 

science

Alphabets, strings, and languages
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• Examples and questions:
– if L = {01,1,100} → 110001110011  L*, since 

110001110011 = 1◦100◦01◦1◦100◦1◦1
– if L = {ab, ba, acb} → abacbab  L*
– if L = Ø → L* = {e}

• the only possible concatenation w1◦.....◦ wk with k = 0

– 100011100
– 1011001
– acbbaab
– baacbab

Examples

= 100◦01◦1◦100
= 1◦01◦100◦1
= acb◦ba◦ab
= ba◦acb◦ab
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• Lemma: if L1  L2 → L1*  L2* from the definition of 
Kleene star

• Theorem: if L = {w  {0, 1}* : w has an unequal number 
of 0 and 1} → L* = {0, 1}*

• Proof:
– {0, 1}  L, since both 0 and 1 has an unequal number  

of 0 and 1 → {0, 1}*  L* by the lemma
– L*  {0, 1}*

• B  Σ* = {0, 1}* is true for each language B
– L* = {0, 1}*, the subset is true for both directions

Alphabets, strings, and languages
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Finite representation of language
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Finite representation of language

• Theorem: only a small portion of the languages can be 
represented finitely

• Proof:
– Σ is an alphabet with all possible letter
– Σ*, the set of all possible words, is countably infinite
– P(Σ*), the number of all possible language, is 

uncountable
– a language representation is a word

• does not matter if the elements are listed or a 
common property is given

– there are only countably infinite language 
representation but there are uncountable languages 
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• Motivating example:
– L = {w  {0, 1}* : w has two or three occurrences of 1 

and the first and second are not consecutive} 
– this language can be described with only singleton 

sets and language operations

Regular expressions
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– L = {0}*◦{1}◦{0}*◦{0}◦{1}◦{0}*◦(({1}◦{0}*){0}*)
• {0} = language containing string 0
• {0}* = Kleene star of the previous language
• {0}*◦{1} = concatenation of the previous language 

and language {1}
– it is more simple to omit the braces and write 

L=0*10*010*(10*0*) 
• we need an exact definition what this expression 

does mean

Regular expressions



Version 47
158

Regular expressions

• Definition of regular expression, RE over alphabet Σ:
strings over Σ  {, , Ø, , } that can be obtained as
– Ø and any element of Σ is a regular expression
– (αβ) is a regular expression 

• α and β are regular expressions
– (α  β) is a regular expression
– α is a regular expression
– nothing is regular expression unless it follows the 

previous four points
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Regular expressions

• It is a recursive definition
• E.g.: Σ = {x, y} → Ø, x, y, (xy), (xy), ((xy)  z) RE
• For simplicity (, ) can be omitted

– e.g.: ((xy)z) = xyz, (x  y) = x  y
– beware: (xy) ≠ xy
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Regular expressions

• Regular expressions:
– are language generators

• describe how a generic specimen in the language 
is produced

• language generators are not algorithms
– represent a new way to define a language
– , , Ø, ,  are new symbols without meaning at the 

moment
• these symbols appear only in regular expression
• we will see that these symbol correspond to , *, 

Ø, ,  so only these regular symbols will be used
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Regular expressions

• Definition of function L: RE → languages:
– α and β are regular expressions
– L(Ø) = Ø, L(a) = {a},  a  Σ
– L((αβ)) = L(α)L(β)   
– L((α  β)) = L(α)  L(β)
– L(α) = L(α)*

• Now the meaning of the new symbols are defined
– from now on we use  instead of , ...



Regular expressions

• L(Ø*) = L(Ø)* = Ø* = {e}
• Nota bene: 'a' can be

– symbol
– string
– language
– RE

Version 47
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Properties of RE

• Commutative: r  s = s  r
• Associative:

– (r  s)  t = s  (r  t)
– (rs)t= r(st)

• Distributive:
– r(s  t) = rs  rt
– (s  t)r = sr  tr
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Properties of RE

• Ø identity element:
– Ør = r
– rØ = r

• Idempotent: r** = r* 
• Precedence in increasing order: , ◦, *
• All these operators are left associative

– if the same operator is at both sides of an operand → 
the left one must be performed first

• E.g.: (a)  ((b)*(c)) is equivalent with a  b*c
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Example

• E.g.: L( ((a  b)a) ) = ?
= L( ((a  b)a) ) = L((a  b))L(a) 
= L((a  b)){a} 
= L((a  b))*{a} 
= (L(a)  L(b))*{a} 
= ({a} {b})*{a} 
= {a, b}*{a} 
= {w  {a, b}* : w ends with 'a'}
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Example

• L(a  ab)L(cd  dc) = ?
= L(a  ab)L(cd  dc) =
= (L(a)  L(ab))(L(cd)  L(dc)) =
= ({a}  {ab})({cd}  {dc}) =
= {a, ab}{cd, dc} =
= {acd, adc, abcd, abdc}
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Example

• L(a  Ø)L(ab  ba) = ?
= L(a  Ø)L(ab  ba) =
= (L(a)  L(Ø))(L(ab)  L(ba)) =
= ({a}  Ø)({ab}  {ba}) =
= {a}{ab, ba}={aab, aba}
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Example

• True or false?
– baa  L(a*b*a*b*)
– L(b*a*)  L(a*b*) = L(a*  b*)
– L(a*b*)  L(c*d*) = Ø
– abcd  L( (a(cd)*b)* )

– false because the first iteration of the 
outermost * can generate "ab" but after 
that there is a compulsory "a" 
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Regular languages

• Definition 1 of regular languages, : the set of 
languages satisfying the following properties
– Ø  , {a}  ,  a  Σ
– if A, B   → A  B  , A◦B  , A*  
– if S is a set of languages and it satisfies the first two 

points →   S ( is minimal)
•  is the closure of the basic languages respect to union, 

concatenation, and Kleene star
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Regular languages

• Nota bene:
–  is a set of languages, a language is a set of strings
– don't confuse language with grammar
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Example

• Give regular expression RE such that L(RE) = {w  {a, b}*} 
– RE = (a*b*)* or RE = (a  b)*

• Give regular expression RE such that L(RE) = 
{w  {a, b}* | abba is a substring of w}
– RE = (a*b*)*abba(a  b)*

• Give regular expression RE such that L(RE) = 
{w  {a}* | #a is odd} 
– RE = a(aa)*

• Give regular expression RE such that L(RE) = 
{w  {a, b}* | #a is odd} 
– RE = b*ab*(b*ab*ab*)*



Example

• Give regular expression RE such that
L(RE) = {w  {a, b}* | #a is even or #a mod 3 = 0}
– RE1 = (b*ab*ab*)*  b*
– RE2 = (b*ab*ab*ab*)*  b*
– RE = RE1  RE2 = (b*ab*ab*)*  b*  (b*ab*ab*ab*)*
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Regular languages

• Theorem: every finite language is regular
• Proof: 

– let |L| = n, wi  Σ* the possible strings in L
– let RE R = w1  w2  ...  wn

– L = L(R)
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Regular expressions

• Definition 2 of regular languages: every language which 
can be described by a regular expression

• We cannot describe some languages by regular 
expressions though they have very simple descriptions 
by other means
– L = {anbn : n ≥ 0}  not regular



Summary

• Alphabets, strings, and languages
• Finite representation of language
• Regular expressions
• Properties of RE
• Regular languages
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Next time

• Deterministic finite automata
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Elements of the Theory of Computation

Lesson 4
2.1. Deterministic finite automata

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com



Last time

• Alphabets, strings, and languages
• Finite representation of language
• Regular expressions
• Properties of RE
• Regular languages
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Deterministic finite automata

• Structure of DFA
• The operation of DFA
• State diagram
• Configuration
• Yield in one step
• Computation
• Yield
• String accepted by DFA
• Language accepted by DFA
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Deterministic finite automata

• Deterministic finite automaton, DFA: mathematical model 
for a machine that can accept certain types of languages
– it is called a language recognizer

• DFA is
– deterministic because it is unambiguous what to do 

next
– finite because it is defined with finite sets
– automaton because does not need user interaction
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Structure of DFA
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Deterministic finite automata

• Definition of deterministic finite automaton, M: a 
quintuple (K, Σ, δ, s, F), where:
– K set of states (finite)
– Σ alphabet (finite)
– δ transition function, K×Σ → K

• δ is defined for all pair in K×Σ
– s  K, initial state
– F  K, the set of final states

• F could be called accepting states
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The operation of a DFA

• A DFA begins 
– in state s
– reading the first symbol in the input tape

• The DFA changes state
– if 

• M is in state q 
• reading symbol   Σ
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The operation of a DFA

– then 
• M passes to state δ(q, )

– the new state is determined uniquely as δ is a 
function

• the reading head steps one to the right
• After reading the last symbol, DFA halts

– the input is accepted if DFA is in q  F
– otherwise the input is rejected 
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State diagram

• State diagram is a representation of a DFA
– it is a directed graph

• nodes represent states
– the outdegree of each node |Σ|
– name the states

• arrows are labeled with elements of δ
• Sink: a node with only reflexive outgoing arcs
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State diagram
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Deterministic finite automata

• DFA is denoted as either M = (K, Σ , δ, s, F) or 
M(K, Σ , δ, s, F)

• Give the state diagram of M = (K, Σ, δ, s, F)! 
– K = {q0, q1}
– Σ = {a, b}
– s = q0

– F = {q1}

q  δ(q, )
q0 a q1

q0 b q0

q1 a q0

q1 b q1
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Configuration

• Definition of configuration of a DFA M = (K, Σ, δ, s, F): an 
ordered pair of the current state of M and the unread part 
of the input
– it is an element of K×Σ*
– there is no need to store the whole input because the 

reading head cannot go to the left, so the already 
read input cannot affect the result

– the effect of the already read input is in the current 
state

– e.g.: (q5, aaabb)
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Example
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Example

• M accepts L = {w : the number of 'a' in w is odd}
– q0 - the number of 'a' is even
– q1 - the number of 'a' is odd

• Is it a valid configuration if 
w = bababb
− (q0, abbba)
− (q0, bb)
− (q1, b)
− (q1, abb)
− (q2, babb)
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Yield in one step

• Definition of yield in one step of a DFA, |-M: a relation 
between two "neighboring" configurations
– formally: 

• if a  Σ, y  Σ*, q, p  K, δ(q, a) = p
• then ((q, ay), (p, y))  |- or (q, ay) |- (p, y)

– we say: (q, ay) yields (p, y) in one step
• there is an appropriate transition between the two 

configurations
– |-M  (K×Σ*)2

• If it is unambiguous that the yield corresponds to which 
DFA then the subscript M may be omitted
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Example



Example

• Is it a valid yield?
– (q0, abbba) |- (q1, abbba)
– (q0, aba) |- (q1, ba)
– (q0, abb) |- (q0, bb)
– (q0, bab) |- (q0, ab) Version 47

192



Version 47
193

Computation

• Definition of computation by DFA M: a sequence of 
configuration C0, C1, ... Cn such that C0 |- C1 |- ... |- Cn

– e.g.: (q1, abaa) |- (q2, baa) |- (q1, aa) |- (q3, a)
– the length of a computation is the number of yield in 

one step
– the first and the last configuration can be connected 

with the yield in n steps relation, signed as |-n

• e.g.: (q1, abaa) |-3 (q3, a)
• We will use computation at NFA
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Example

Are they valid yields?
(q0, bababa) |- (q0, ababa) |- (q1, baba) |- (q1, aba) |- (q1, ba)
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Yield

• Definition of yield of a DFA, |-M*: the reflexive, transitive 
closure of  |-M

– if (q', w') can be reached from (q, w) through a 
number of yield in one step operation then the yield 
operation holds between (q, w) and (q', w')

• denote as: (q, w) |-* (q', w')
– zero step is possible: (q, w) |-M* (q, w)
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Example

(q0, bababa) |-* (q1, aba)
(q0, bababa) |-* (q1, ba)

(q0, bababa) |-3 (q1, aba)
(q0, bababa) |-5 (q0, ba)
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String accepted by DFA

• Definition of word accepted by DFA: w  Σ* is accepted 
by M if (s, w) |-M* (q, e), q  F
– if an accepting configuration is reachable from the 

initial configuration through yield operation
• initial configuration: (s, w) = (starting state, whole 

input)
• accepting configuration: the state of the 

configuration belongs to the final states, and w = e
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Example

• babbaa is accepted by DFA
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Example

• Are the following strings accepted? 
– abbba
– bbbabbb
– babababab



Version 47
200

Language accepted by DFA

• Definition of language accepted by DFA M, L(M): the set 
of strings accepted by M
– L(M) = {w  Σ* : (s, w) |-M* (q, e), q  F}

• The number of steps required to decide if w  L(M) or 
not: |w|
– one symbol is processed in every step
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Example

• Give the computation of bbabaa and aabaab by 
DFA M!
– L(M) = {w : in w the number of 'a' are odd}



Example

• Input: bbabaa

(q0, bbabaa) |-M (q0, babaa)
|-M (q0, abaa)
|-M (q1, baa)
|-M (q1, aa)
|-M (q0, a)
|-M (q1, e)

Accepted
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Example

• Input: aabaab

(q0, aabaab) |-M (q1, abaab)
|-M (q0, baab)
|-M (q0, aab)
|-M (q1, ab)
|-M (q0, b)
|-M (q0, e)

Rejected
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Example

• L(M) = {w : w  {a, b}* and w contains the string aba}

• It is important to give the meaning of the states
– q0: 0 symbol (e) is read from aba
– q1: 1 symbol (a) is read from aba
– q2: 2 symbol (ab) is read from aba
– q3: 3 symbol (aba) is read from aba



Example

• Define DFA M such that L(M) = {w  {a, b}* | #b = 3}!
• States:

– q1: #b = 0
– q2: #b = 1
– q3: #b = 2
– q4: #b = 3 – final state
– q5: #b ≥ 4

205
Version 47
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• L(M) = {w  {a, b}* : in w the number of 'a' is even and 
there is at most one b in w}
– q0,0: #a is even, no b yet
– q1,0: #a is odd, no b yet
– q1,1: #a is odd, 1 b occurred
– q0,1: #a is even, 1 b occurred
– q0,2: #a is even, more than 1 b occurred
– q1,2: #a is odd, more than 1 b occurred



• The two DFAs are equivalent
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Summary

• Structure and operation of DFA
• State diagram
• Yield in one step
• Yield
• String accepted by DFA
• Language accepted by DFA
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Next time
• Non-deterministic finite automata
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Lesson 5
2.2. Non-deterministic finite automata
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Last time

• Structure of DFA
• The operation of DFA
• State diagram
• Configuration
• Yield in one step
• Computation
• Yield
• String accepted by DFA
• Language accepted by DFA
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Non-deterministic finite automata

• Non-deterministic behavior
• NFA
• Difference of DFA and NFA
• Yield in one step
• Yield
• String accepted by NFA
• Language accepted by NFA
• Automata equivalence
• DFA ↔ NFA
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Non-deterministic behavior

• Definition of non-deterministic behavior: the operation 
such a way that there is a number of possible next step 
and there is no way to decide between them
– at finite automaton: change the actual state in such a 

way that is only partially determined by the current 
state and input symbol
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Non-deterministic behavior

• In other words:
– there are several possible next states for a given 

input
• our model does not determine which state should 

be chosen
– it is not a realistic model as there is no way to 

implement it directly
• though it can be simulated by taking into account 

every possibility 
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Motivating example

• Consider the language L = (ab  aba)*, which is accepted 
by the next DFA
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Motivating example

• The previous figure is quite complex
– it is hard to check if it is DFA at all
– it is hard to check if it accept L
– there is no simpler DFA that can accept L
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Motivating example

• The current automata is simpler 
though it is not DFA
– from q0 there is no b arrow
– from q1 there is two b arrow but not 

'a' arrow
– from q2 there is no b arrow

• Operation
– ab: q0 → q1 → q0

– aba: q0 → q1 → q2 → q0

• At q1 we might choose the wrong way
– let us suppose we always guess 

correctly
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Motivating example

• The current automata also accepts L but it 
is not DFA either
– there is an empty transition, e, from q2

• we might go to q0 without moving the 
head

• Operation
– ab:   q0 → q1 → q2 →(reading e) q0

– aba: q0 → q1 → q2 → (reading 'a') q0

q0

a
e b

a

q1

q2
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Motivating example

• The current automata also accepts L but it is not DFA 
either
– a whole string is read in a single transition

• the labels "ab" and "a, b" on an arc has different 
meanings

• Operation
– ab:   q0 →(reading ab) q0

– aba: q0 →(reading aba) q0
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Non-deterministic finite automata
NFA

• Definition of non-deterministic finite automata, M: a 
quintuple (K, Σ, Δ, s, F), where
– K set of states (finite)
– Σ alphabet (finite)
– s  K initial state
– F  K the set of final states
– Δ  K×Σ*×K the transition relation

• the 2nd edition book define Δ  K×(Σ  e)×K
• The push down automaton is similar to NFA

– it is also non-deterministic
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Non-deterministic finite automata, NFA

• Michael Oser Rabin (1931) • Dana Stewart Scott (1932)
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Differences between DFA and NFA

• Δ is a relation and not a function:
– for one state several next states may be reached 

reading the same input
– Δ may not be defined for all K×Σ
– there are transition with strings instead of symbols
– there are e transitions
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Configuration

• Definition of configuration of a NFA M = (K, Σ, Δ, s, F): 
an ordered pair of the current state of M and the unread 
part of the input
– it is an element of K×Σ*
– there is no need to store the whole input because the 

reading head cannot go to the left, so the already 
read input cannot affect the result

– e.g.: (q8, aaba)
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Yields in one step

• Definition of yield in one step of an NFA, |-M: a relation 
between two "neighboring" configurations
– formally: 

• if x, y  Σ*, q, p  K, (q, x, p)  Δ
• then ((q, xy), (p, y))  |- or (q, xy) |- (p, y)

– we say: (q, xy) yields (p, y) in one step
• there is an appropriate transition between the two 

configurations
– |-M  (K×Σ*)2

• If it is unambiguous that the yield corresponds to which 
NFA then the subscript M may be omitted
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Computation

• Definition of computation by NFA M: a sequence of 
configuration C0, C1, ... Cn such that C0 |- C1 |- ... |- Cn

– e.g.: (q1, abaa) |- (q2, aa) |- (q1, aa) |- (q3, a)
– the length of a computation is the number of yield in 

one step applied
– the first and the last configuration can be connected 

with the yield in n steps relation, signed as |-n

• e.g.: (q1, abaa) |-3 (q3, a)
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Yield

• Definition of yield of an NFA, |-M*: the reflexive, transitive 
closure of  |-M

– if (q', w') can be reached from (q, w) through a 
number of yield in one step operation then the yield 
operation holds between (q, w) and (q', w')

• denote as: (q, w) |-M* (q', w')
– zero step is possible: (q, w) |-M* (q, w)
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String accepted by NFA

• Definition of strings accepted by NFA: w  Σ* is 
accepted by M if (s, w) |-* (q, e), q  F
– the automaton is in final state
– the whole input is read

• If NFA M cannot process the whole input because of the 
missing transitions then w is rejected
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String accepted by NFA

• The yield in NFA can lead to different configurations 
reading the same input
– there are possible branching at the computation of w
– if there is as much as one path from (s, w) to (q, e) 

such that q  F then w is accepted
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Language accepted by NFA

• Definition of language accepted by NFA M, L(M): the set 
of strings accepted by M
– L(M) = {w  Σ* : (s, w) |-M* (q, e), q  F}
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Example

• NFA that accept all strings containing bb or bab
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Example

• Formally (K, Σ, Δ, s, F), where: 
– K = {q0, q1, q2, q3, q4}
– Σ = {a, b}
– Δ = {(q0, a, q0), (q0, b, q0), (q0, b, q1), (q1, b, q2),

(q1, a, q3), (q2, e, q4), (q3, b, q4), (q4, a, q4),
(q4, b, q4)}

– s = q0

– F = {q4}
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Example

• Input: bababab
• Case 1:

– (q0, bababab) |- (q0, ababab) |- (q0, babab) |-
(q0, abab) |- … |- (q0, e)

– this computation ended in a non-final state
• Case 2:

– (q0, bababab) |- (q1, ababab) |- (q3, babab) |-
(q4, abab) |- (q4, bab) |- (q4, ab) |- (q4, b) |- (q4, e)

• The string is accepted because there is such a 
computation which leads to a final (accepting) 
configuration
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Non-deterministic finite automata

• End of input theorem: (q, x) |-* (p, e) ↔ (q, xy) |-* (p, y)
– the end of the input, y, does not effect the operation

of M until it is read
– e.g.: (q3, alma) |-* (q7, e) ↔ (q3, almafa) |-* (q7, fa)
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Non-deterministic finite automata

• Proof: 
– (q, x) |-* (p, e) ↔ (q, x) = (q0, x0) |- (q1, x1) |- (q2, x2) |-

… |- (qn, xn) = (p, e) by detailing the yield
• q0, q1, …, qn  K, x0, x1, …, xn  Σ*

– (qi, xi) |- (qi+1, xi+1) ↔  (qi, ui, qi+1)  Δ, ui Σ* such 
that x i= uixi+1, by the definition of yield in one step

–  (qi, ui, qi+1)  Δ ↔ (qi, uixi+1y) |- (qi+1, xi+1y) by the 
definition of yield in one step

– (qi, uixi+1y) |- (qi+1, xi+1y) ↔ (q, xy) |-* (p, y)
• by the transitive property of yield
• (q, xy) = (q0, x0y), (qn, xny) = (p, y)

detailing the yield

definition of yield in one step

definition of yield in one step

transitive property of yield
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Non-deterministic finite automata

• Theorem: if (q, x) |-* (p, e), (p, y) |-* (r, e) → 
(q, xy) |-* (r, e)
– example: (q3, alma) |-* (q7, e), (q7, fa) |-* (q4, e) ↔ 

(q3, almafa) |-* (q4, e)
– let:

• M = (K, Σ, Δ, s, F) be a NFA 
• q, r, p  K
• x, y  Σ*
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Non-deterministic finite automata

• Proof:
– (q, x) |-* (p, e) → (q, xy) |-* (p, y)  by the previous 

theorem
– if (q, xy) |-* (p, y), (p, y) |-* (r, e) → (q, xy) |-* (r, e) by 

the transitive property of |-*
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Automata equivalence

• Definition of the equivalence of finite automata M1, M2: 
L(M1) = L(M2)
– the automata can have different states and transitions
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NFA ↔ DFA

• A DFA can be seen as a special type of NFA
– there are no e transitions
– one symbol is read in one transitions
– the current state and symbol determines the next 

state uniquely
– from each state there are exactly |Σ| transitions
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NFA ↔ DFA

• Construction:
– NFA is signed with q, Δ, F
– DFA is signed with Q', δ', F'
– q  K is one of the states which can be reached from 

s by consuming the input so far
– idea: Q  K' is the set of states from K which can be 

reached from s by consuming the input so far
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NFA ↔ DFA

• Construction:
– Q may have a label such as {q1, q5, q21} but it is a 

single state of K'
– δ'(Q, a) = Q' is the set of states (of K) which can be 

reached from one state of Q by reading 'a' 
• possibly followed by a number of e transitions
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NFA ↔ DFA
• Construction:

– formally:
• E(q) = {p  K, (q, e) |-*M (p, e)}

– the set of states that can be reached from q by 
zero or more e transition

• K' = P(K)
– we may not need all of them

• Σ' = Σ
• s' = E(s)
• F' = {Q  K : Q  F ≠ Ø}
•

q Q,(q,a,p) Δ

δ'(Q,a) = E(p)
 

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NFA ↔ DFA

• Remarks: 
– M' is deterministic because the 4 properties to 

differentiate DFA from NFA holds
– Ø  K'
– the cost to resolve determinism is to introduce 2|K|

new state
• the increase is exponential
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NFA ↔ DFA

• E(q) is the closure of the set {q} under the relation
{(p, r) : there is a transition (p, e, r)  Δ}

• E(q) can be computed by the following algorithm:
E(q) := {q};

while there is a transition (p, e, r)  Δ 
with p  E(q) and r  E(q) do

E(q) := E(q)  {r};
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Example

• E(q0) =
• E(q1) = 
• E(q2) = 
• E(q3) = 
• E(q4) =

 {q0, q1, q2, q3}
 {q1, q2, q3}
 {q2}
 {q3}
 {q3, q4}
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NFA ↔ DFA
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Example

• Defining δ':
– δ'(Q, a) = the set of all states of M that can be 

reached from one state of Q by reading 'a' 
• followed possibly by several e transitions

– s' = E(q0) = {q0, q1, q2, q3}
– δ'({q0, q1, q2, q3}, a) = E(q0)  E(q4) = {q0, q1, q2, q3, 

q4}
• there are 'a' transitions only from q1 to q0 and q4;  

and from q3 to q4
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NFA ↔ DFA

• Lemma: (q, w) |- M* (p, e), p  F ↔ (E(q), w) |-M'* (P, e), 
p  P  F'
– NFA M and DFA M' accept the same w words
– w  Σ*, q, p  K
– read "p  P" as: some (not defined) P containing p
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NFA ↔ DFA

• Proof by induction on |w|:
– basis step:

• |w| = 0 ↔ w = e, we must show that 
(q, e) |-M* (p, e), p  F ↔ (E(q), e) |-M'* (P, e), 
p  P  F'

• let P = E(q) 
• (E(q), e) |-M'* (E(q), e) by the reflexive property of 

|-M'*
• (E(q), e) |-M'* (P, e) by the previous two points



NFA ↔ DFA

• (q, e) |-M* (p, e) ↔ p  E(q) by the definition of E(q)
• p  P by the previous point and P = E(q) 
• P F' by p  P, p  F and the construction of F' 
• comment: 

– M can go from q to p (a final state) through e
arcs

– M' performs 0 step while processing e
» E(q) is both initial and final state of M'
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– induction step: we prove the claim for k + 1
• let w = va, v  Σ*, a  Σ

– →
• suppose: (q, va) |-M* (p, e), p  F → 

(q, va) |-M* (r, a) |-M (n, e) |-M* (p, e), r, n  K
– detailing the yield
– r, n exist but not defined exactly

• (q, va) |-M* (r, a) ↔ (q, v) |-M* (r, e) by the 
end of input theorem

• (q, v) |-M* (r, e) ↔ (E(q), v) |-M'* (R, e), r  R by the 
induction hypothesis

– R is not defined, but we know that r  R

NFA ↔ DFA

R P = δ'(R, a) 

ea e
e

a
a

r

n

p

detailing the yield

end of input theorem

induction hypothesis
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• (E(q), v) |-M'* (R, e), r  R ↔
(E(q), va) |-M'* (R, a), r  R by the 
end of input theorem

• let P = δ'(R, a), P is not defined exactly
• p  P because r  R, (r, a) |-M (n, e) |-M* (p, e), the 

construction of δ'
• P = δ'(R, a) → (R, a) |-M' (P, e) by the 

definition of the yield in one step
• p  P  F' by the construction of F' 
• (E(q), va) |-M'* (R, a), (R, a) |-M' (P, e) → (E(q), va) 

|-M'* (P, e), P  F' by the transitive property of yield

NFA ↔ DFA

R P = δ'(R, a) 

ea e
e

a
a

r

n

p

construction

end of input theorem

definition of the yield in one step

transitive property of yield
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– ←
• suppose: (E(q), va) |-M'* (P, e), p  P  F' → 

(E(q), va) |-M'* (R, a) |-M' (P, e), p  P, R  F'
– detailing the yield
– R exists but not defined exactly

• (E(q), va) |-M'* (R, a) ↔ (E(q), v) |-M'* (R, e) by the 
end of input theorem

• (E(q), v) |-M'* (R, e) ↔ (q, v) |-*M (r, e), r  R by the 
induction hypothesis

• (q, v) |-M* (r, e) ↔ (q, va) |-M* (r, a) by the 
end of input theorem

• (R, a) |-M' (P, e) ↔ δ'(R, a) = P by the definition of 
the yield in one step

NFA ↔ DFA

R P = δ'(R, a) 

ea e
e

a
a

r

n

p

end of input theorem

end of input theorem

induction hypothesis

detailing the yield
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• δ'(R, a) = P →  (r, a, n)  Δ and p  E(n),  
r  R, p, n  P by the construction of δ' 

– δ′(ܴ,ܽ) = ⋃ ܧ ݎ 	௥ఢோ,(௥,௔,௡)ఢ୼

– p and n exist but not defined exactly
• (r, a) |-M (n, e) |-M* (p, e) by the 

definition of the yield in one step, the definition of 
the E(n) set, and the previous point

• (q, va) |-M* (r, a), (r, a) |-M (n, e) |-M* (p, e) ↔
(q, va) |-M* (p, e) by the transitive property of yield 

• P  F' ↔  p  P  F by the construction of F'
• p  P  F → p  F

NFA ↔ DFA

R P = δ'(R, a) 

ea e
e

a
a

r

n

p

construction

transitive property of yield

definition of the yield in one step
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NFA ↔ DFA

• Theorem: for each NFA M = (K, Σ, Δ, s, F), there is an 
equivalent DFA M' = (K', Σ', δ', s', F')

• Proof: w  Σ* 
– w  L(M) ↔ (s, w) |-M* (p, e), p  F 

• by definition of acceptance
– (s, w) |-M* (p, e) ↔ (E(s), w) |-M'* (P, e), p  P  F' 

• by the lemma
– (E(s), w) |-M'* (P, e), P  F'↔ w  L(M') by definition 

of the acceptance
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Example
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Example

• Defining E sets
– E(q1)
– E(q2)
– E(q3)
– E(q4)
– E(q5) 

• Initial state
– s' = E(q1) = {q1} = Q0

= {q1}
= {q2}
= {q2, q3, q4}
= {q4}
= {q5}
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• Defining δ'(P, )
– δ'({q1}, a) = Ø = Q1

– δ'({q1}, b) = E(q2) = {q2} = Q2

– δ'(Ø, a) = Ø = Q1

– δ'(Ø, b) = Ø = Q1

– δ'({q2}, a) = E(q3) = {q2, q3, q4} = Q3

– δ'({q2}, b) = Ø = Q1

– δ'({q2, q3, q4}, a) = E(q2)  E(q3)  E(q5) = {q2, q3, q4, 
q5} = Q4

– δ'({q2, q3, q4}, b) = Ø = Q1

– δ'({q2, q3, q4, q5}, a) = E(q2)  E(q3)  E(q5) = {q2, q3, 
q4, q5} = Q4

– δ'({q2, q3, q4, q5}, b) = E(q1) = {q1} = Q0
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Example

• Defining final states:
– F' = {Q3, Q4} = {{q2, q3, q4},

{q2, q3, q4, q5}} 
– the final states contain q3
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Example
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Summary

• Non-deterministic behavior, NFA
• Difference of DFA and NFA
• Yield in one step, Yield
• String and language accepted by NFA
• Automata equivalence
• DFA ↔ NFA, construction, proof
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Next time
• Non-deterministic finite automata
• Finite automata and regular expressions
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Elements of the Theory of Computation

Lesson 6
2.3. Non-deterministic finite automata

2.4. Finite automata and regular expressions

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com



Last time

• Non-deterministic behavior
• NFA
• Difference of DFA and NFA
• Yield in one step
• Yield
• String accepted by NFA
• Language accepted by NFA
• Automata equivalence
• DFA ↔ NFA, construction, proof
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Finite automata

• RE → NFA
• Closure properties

– union
– concatenation
– Kleene star
– complementation
– intersection

• Algorithms for automata
• RE ↔ NFA
• Pumping theorem 1
• Languages that are not regular

Version 47
263



Version 47
264

RE → NFA

• Some theorems help us to create NFA which is 
equivalent with some regular expression
– Thomson's construction
– regular expressions define regular languages

• The theorems include construction, i.e., they not only 
prove the existence but provide the required automaton
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RE → NFA

• These theorems helps to prove that RE and NFA are 
equivalent
– for a given regular expression an NFA always exists 

which accepts the same language what the regular 
expression generates

– for a given NFA always exists a regular expression 
which generates the same language what the NFA 
accepts



Thompson

• Kenneth Lane Thompson (1943)
– American pioneer of computer science
– his work:

• the B programming language
• the C programming language
• one of the creators and early developers of the 

Unix and Plan 9 operating systems
• regular expressions
• early computer text editors QED and ed
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Union

• Theorem: languages accepted by finite automata are 
closed under union
– if L(M1), L(M2) are languages accepted by finite 

automata M1 and M2 →  a finite automata M such 
that L(M) = L(M1) L(M2)

• the term closed is used because the new automata 
M is the same type as M1,M2, finite automata

– the union of two regular languages is also regular



Union

• Comments:
– M1,M2, are NFAs
– L(M1), L(M2) are languages accepted by finite 

automata M1 and M2

– L(M1) L(M2) is also a language
– L(M) = L(M1) L(M2) is accepted by automaton M
– M is a finite automation (the same type as M1 and M2)
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Union

M1

M2

F1

F2

s1

s2

M1

M2

F1

F2

s1

s2

e

es
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Union

• Construction:
– NFA M1, M2 are known
– M1 = (K1, Σ, Δ1, s1, F1), M2 = (K2, Σ, Δ2, s2, F2)

• K1 and K2 are disjoint
– M = (K, Σ, Δ, s, F)

• K = K1  K2  {s}
– s is a new state not in K1  K2

• Σ are the same for the 3 automata
• Δ = Δ1  Δ2  {(s, e, s1), (s, e, s2)}
• F = F1  F2
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Union
• Proof:

– suppose w  L(M) 
• w  L(M) → (s, w) |-M* (q, e), q  F by the 

definition of acceptance
• (s, w) |-M (s1, w) |-M* (q, e), q  F1 or

(s, w) |-M (s2, w) |-M* (q, e), q  F2 by the 
construction of M and the previous point

M1

M2

F1

F2

s1

s2

e

es
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Union

• (s1, w) |-M* (q, e) → (s1, w) |-M1* (q, e), q  F1 by the 
construction of M

– (s1, w) |-M1* (q, e), q  F1 → w  L(M1) by the 
definition of acceptance

• or (s2, w) |-M* (q, e) → (s2, w) |-M2* (q, e), q  F2 by 
the construction of M

– (s2, w) |-M2* (q, e), q  F2 → w  L(M2) by the 
definition of acceptance

• w  L(M) → w  L(M1) or w  L(M2) → 
L(M)  L(M1)  L(M2)

M1

M2

F1

F2

s1

s2

e

es
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Union

– suppose w  L(M1)  L(M2) 
• w  L(M1)  L(M2) → (s1, w) |-M1* (q, e), 

q  F1 or (s2, w) |-M2* (q, e), q  F2 by the definition 
of acceptance

• (s1, w) |-M1* (q, e) → (s1, w) |-M* (q, e), q  F1 by the 
construction of M

• (s2, w) |-M2* (q, e) → (s2, w) |-M* (q, e), q  F2 by the 
construction of M

• (s, e, s1), (s, e, s2)  Δ by the construction of M

M1

M2

F1

F2

s1

s2

e

es
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Union

• (s, e, s1), (s, e, s2)  Δ → (s, w) |-M (s1, w), 
(s, w) |-M (s2, w)

• (s, w) |-M (s1, w), (s1, w) |-M* (q, e) → 
(s, w) |-M* (q, e), q  F1 by the transitivity of |-M*

• (s, w) |-M (s2, w), (s2, w) |-M* (q, e) → 
(s, w) |-M* (q, e), q  F2 by the transitivity of |-M*

• (s, w) |-M* (q, e), q  F1 or q  F2 → w  L(M) by 
the definition of acceptance

• w  L(M1)  L(M2) → w  L(M) → 
L(M1)  L(M2)  L(M)

– L(M)  L(M1)  L(M2), L(M1)  L(M2)  L(M) → 
L(M) = L(M1)  L(M2)

M1

M2

F1

F2

s1

s2

e

es
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Union

• M uses non-deterministic behavior to guess which 
direction is correct

• M is finite automaton because we started from two finite 
automata and added 1 new state and 2 transitions
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Concatenation

• Theorem: languages accepted by finite automata are 
closed under concatenation
– if L(M1), L(M2) are languages accepted by finite 

automata M1 and M2 →  a finite automata M such 
that L(M) = L(M1) ◦ L(M2)
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Concatenation
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Concatenation

• Construction:
– NFA M1, M2 are known
– M1 = (K1, Σ, Δ1, s1, F1), M2 = (K2, Σ, Δ2, s2, F2)

• K1 and K2 are disjoint
– M = (K, Σ, Δ, s, F)

• K = K1  K2 (K1 and K2 are disjoint)
• Σ are the same for the 3 automata
• Δ = Δ1  Δ2  (F1 x {e} x {s2})
• s = s1

• F = F2
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Kleene star

• Stephen Cole Kleene (1909 –1994)
– American mathematician
– helped to lay the foundations for theoretical computer 

science
– a number of mathematical concepts are named after 

him:
• Kleene hierarchy
• Kleene algebra
• the Kleene star (Kleene closure)
• Kleene's recursion theorem
• Kleene fixpoint theorem
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Kleene star

• Theorem: languages accepted by finite automata are 
closed under Kleene star
– if L(M1) is a language accepted by finite automata M1

→  a finite automata M such that L(M) = L(M1)*
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Kleene star

• Starting state must be final because L(M1)* contains e
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Kleene star

• This state diagram is not correct
– the automaton may accept wrong word if it halts in s1

e

e

M1
a
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Kleene star

• Construction:
– NFA M1 is known
– M1 = (K1, Σ, Δ1, s1, F1)
– M = (K, Σ, Δ, s, F)

• K = K1  {s}, s  K1

• Δ = Δ1  {(s, e, s1)}  (F1 × {e} × {s1})
• s = s
• F = F1  {s}
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Example

• Construct NFA M such that L(M) = (a  b)a !
– create a basic machine for every σ  Σ in the regular 

expression
– use the constructions stated before to connect the 

machines
– at union the machines should be ordered vertically, at 

concatenation horizontally



Example

• L(M) = (a  b)a
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Example

• Construct NFA M such that L(M) = a*  b* !

a

b

e

e

e

e

e

e
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Example

• Construct NFA M such that L(M) = (ab  aab)* !
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Complementation

• Theorem: languages accepted by finite automata are 
closed under complementation
– if L(M1) is a language accepted by finite automata M1

→  a finite automaton M such that 
L(M) = Σ* - L(M1) = L(M1)C



Complementation
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Complementation

• Construction:
– DFA M1 is known

• M1 = (K1, Σ, δ1, s1, F1)
• if M1 is not DFA then it must be converted

– M = (K, Σ, δ, s, F)
• K = K1

• δ = δ1

• s = s1

• F = K1 - F1

• CFG is not closed under complementation
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Intersection

• Theorem: languages accepted by finite automata are 
closed under intersection
– if L(M1), L(M2) are languages accepted by finite 

automata M1 and M2 →  a finite automata M such 
that L(M) = L(M1)  L(M2)

• the intersection of two languages accepted by 
finite automata can be also accepted by a finite 
automata
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Intersection

• Construction:
– apply the previous constructions for M1 and M2

• NFA → DFA twice
• complementation theorem twice
• union once
• NFA → DFA
• complementation theorem once again
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Intersection

• Proof:
– languages accepted by finite automata are closed 

under union and complementation
– intersection can be expressed by these two operation
– L(M) = L(M1)  L(M2) = (L(M1)C  L(M2)C)C

• De'Morgan identity
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L(M) = Σ* ?

• Theorem: there is an algorithm for deciding if L(M) = Σ*
– finite automaton M accepts each possible string

• Proof:
– L(M) = Σ* ↔ L(M)C = Ø

• construct M1 such that L(M1) = L(M)C

• use theorem about complementation
– L(M1) = Ø ↔ if there is no directed path from s1 to any 

element of F1 on the state diagram of M1
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Algorithm for deciding if there is a direct path

denote(A: point, N: number of points)

sign(A)

for i = 1 to N do

if isEdge(A, pi) and !isSigned(pi) then

denote(i, N)

end

bool isDirectedPath(A: startPoint, 
B: endPoint, N: number of points)

denote(A, N)

if isSigned(B) then return true

else return false

end
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L(M1)  L(M2) ?

• Theorem: there is an algorithm for deciding if 
L(M1)  L(M2)
– M1 and M2 are finite automata

• Proof:
– L(M1)  L(M2) ↔ L(M1)  L(M2)C = Ø
– we know how to check if L = Ø



Version 47
297

L(M1) = L(M2) ?

• Theorem: there is an algorithm for deciding if 
L(M1) = L(M2)
– M1 and M2 are finite automata

• Proof:
– L(M1) = L(M2) ↔ L(M1)  L(M2) and L(M2)  L(M1)

• we know how to check if L1  L2

– it is an algorithm and not the definition of the 
equivalence of two automata
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RE ↔ NFA

• Theorem: a language is regular ↔ it is accepted by a 
finite automaton

• Proof: →
– recall that  is the set of regular languages

• Ø  , {a}    a  Σ
• if A, B   → A  B  , A◦B  , A*  
•  is minimal

– there are finite automata to accept the empty set and 
the singleton languages 

– languages accepted by finite automata are closed 
under union, concatenation, and Kleene star
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RE ↔ NFA

• Proof: ←
– for each NFA an equivalent RE can be constructed, it 

is not proved here
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Pumping theorem 1

• Theorem: let M(K, Σ, δ, s, F) is a DFA, long enough 
words in L(M) (|w|  |K|) has a form, w = xyz, y ≠ e,
such that xynz  L(M),  n  0

• Proof:
– idea: if L(M) is infinite then the state diagram of M 

must contain a loop
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Pumping theorem 1

– let w  L(M) such that |w| = k  |K|
• w exists since L is infinite
• w = 12…k

– (q0, 12…k) |- (q1, 2…k) |- ... |- (qk-1, k) |- (qk, e)
• q0 = s, qk  F
• the number of yield in one step is k

– since k  |K|,  qi, qj, such that qi = qj, i ≠ j, (i<j)
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Pumping theorem 1

– i+1i+2 …j string moves M from state qi to state qj

– i+1i+2 …j can be removed or repeated without 
affecting the acceptance of w

– 12…i(i+1i+2 …j)nj+1…k  L(M) for n  0
• x = 12…i

• y = i+1i+2 …j

• z = j+1…k

x
s

M

z

qi

y



Example

• L(M) = {w  (ab)*: #a odd in w}
– |K| = 2
– w = bbabaa is long enough
– the previous theorem does not tell how to construct x, 

y, z, it states only their existence
– let us say the revisited node is q0

• x = b, y = baba, z = a are valid strings
– xy0z = ba  L(M), xy1z = bbabaa  L(M), 

xy2z = bbabababaa  L(M), ...
• x = e, y = bbaba, z = a are valid strings too

– we can say that the revisited node is q1
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Languages that are not regular

• Theorem: L = {anbn : n0} is not regular
• Proof by indirection:

– assume that L is regular and apply the pumping 
theorem for a long enough string akbk, where k is a fix 
number

– xynz = akbk

– x = an1, y = an2, z = bn3 

• n1, n2, n3  N are fix numbers
• xynz = an1ann2bn3

• n1+ nn2 = n3 for  n, contradiction

aaaabbbb

x y z
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Languages that are not regular

– x = an1, y = an2bn3, z = bn4

• xynz = an1(an2bn3)nbn4  L as b precedes 'a' if 
n > 1

– x = an1, y = bn2, z = bn3 

• xynz = an1bnn2bn3

• n1 = nn2 + n3 for n, contradiction

aaaabbbb

x y z

aaaabbbb

x y z
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Languages that are not regular

– x = an1bn2, y = bn3, z = bn4

• xynz = an1bn2bnn3+n4

• n1 + nn2 + n3 = n4 for n, contradiction
– x = an1, y = an2, z = an3bn4

• xynz = an1ann2+n3bn4

• n1 + nn2 + n3 = n4 for n, contradiction
– L is not regular because with finite state we cannot 

keep in mind the number of 'a' symbols if this value 
has no upper limit

aaaabbbb

x y z

aaaabbbb

x y z
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Languages that are not regular

• Theorem: L = {an : n is prime} is not regular
• Proof by indirection:

– assume that L is regular and apply the pumping 
theorem for a long enough string ak, where k is a fix 
number
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Languages that are not regular

– xynz = ak

• x = ap, y = aq, z = ar for some p, q, r  N, q ≠ 0
• p+nq+r is prime for  n

– let n = p+2q+r+2
– p+nq+r = p+(p+2q+r+2)q+r = 

p+pq+2qq+rq+2q+r = (q+1)(p+2q+r), 
contradiction

– L is not regular because there is no simple periodicity 
in the set of prime numbers



Summary

• RE → NFA
• Closure properties
• Algorithms for automata
• Pumping theorem 1
• Languages that are not regular
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Next time
• Context-free grammars
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3.1. Context-free grammars
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Last time

• RE → NFA
• Closure properties
• Algorithms for automata
• Pumping theorem 1
• Languages that are not regular
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Context-free grammars

• Context-free languages
• Context-free grammars
• Derivation
• Language generated by CFG
• Regular grammars
• NFA ↔ RG
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Context-free languages

• Language recognizer
– a device that accepts valid strings
– e.g.: NFA, DFA

• Language generator
– a device that are capable of producing valid strings
– e.g.: regular expressions
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Regular expressions

• Regular expressions can be viewed as a language 
generator
– RE1 = a(a*  b*)b

• first output 'a'
• then output a number of 'a' or output a number of b
• finally output b
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Context-free grammars

• There are more complex sorts of language generators, 
called context-free grammars (CFG)

• They apply rules to generate a string
– it's not completely determined which rule to use

• Let us generate the same language as before with CFG
– RE1 = a(a*  b*)b
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Context-free grammar

• Introduce new symbols
– S: a string in the language
– M: middle part of the string
– A: a number of consecutive 'a'
– B: a number of consecutive b

RE1 = a(a*  b*)b
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Context-free grammar

• Introduce rules to express the meaning of the new 
symbols
– S → aMb

• where → is read as "can be"
• this rule says that a string in the language starts 

with 'a' then comes a middle part and ends with b
– M → A
– M → B

• the middle part can be a number of consecutive 'a' 
or 'b'

• the or relation is expressed with two rules

RE1 = a(a*  b*)b
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Context-free grammar

– A → e
• a number of consecutive 'a' can be e

– A → aA
• a number of consecutive 'a' can be 1 'a' followed 

by a number of consecutive 'a'
– B → e
– B → bB

RE1 = a(a*  b*)b
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Context-free grammar

• It is easy to see that RE1 and the newly introduced CFG 
generates the same language

• Algorithm for generating a string with a CFG:
start with the string S

while the string contains new symbols

select a new symbol 

select a corresponding rule (the left 
side of the rule = new symbol)

replace the new symbol with the right 
side of the rule

RE1 = a(a*  b*)b
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Example

• To generate the string aaab
– start with S
– apply the rules

• S → aMb resulting in aMb
• M → A resulting in aAb
• A → aA resulting in aaAb
• A → aA resulting in aaaAb
• A → e resulting in aaab

RE1 = a(a*  b*)b
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Context-free grammar

• Consider the string aaAb, which was an intermediate 
stage in the generation of aaab
– we call the strings aa and b, which surround the 

symbol A, the context of A in this particular string
• 'a' and e are also the context of A

– the rule A → aA says that we can replace A by the 
string aA no matter what is the context of A

• that is why the current grammar is called context 
free

• example for a rule which cannot be in CFG: 
aaAb → abA, SaS → bbA

RE1 = a(a*  b*)b
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Context-free grammar

• Definition of context-free grammar, G: a quadruple 
(V, Σ, R, S) where
– V an alphabet
– Σ  V the set of terminals

• a string of a language contains only terminals
• V-Σ is the set of non-terminals (the new symbols)

– R (V-Σ) × V* set of rules
• the left side of a rule is always a single 

non-terminal
• we can write a rule (A, u)  R in the next form 

A →G u
– S  V-Σ start symbol
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Derivation

• Definition of the one step derivation, =>G:
– u = xAz, v = xyz, x, y, z  V*, A  V-Σ
– if A →G y  R →    xAz =>G xyz

• When the grammar to which we refer to is obvious, we 
can write A → w and xAz => xyz instead of A →G w and 
xAz =>G xyz

• Definition of derivation, =>G*: the reflexive, transitive 
closure of =>G
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Derivation

• We call the sequence w0 =>G w1 =>G … =>G wn
a derivation of wn from w0 in G
– w0, w1, … wn  V*

• we term wi as a partially defined string because it 
can contain a non-terminal

– if the derivation has exactly n  N steps then it can be 
emphasized as w0 =>n wn

• E.g.: S => aMb => aAb => aaAb => aaaAb => aaab
– see the CFG introduced previously
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Language generated by CFG

• Definition of language generated by CFG G, L(G): the 
set of strings generated by G
– L(G) = {w  Σ* : S =>G* w}

• Definition of context-free language L:  context-free 
grammar G such that L = L(G)
– nota bene: language and grammar are different 

concepts
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Example

• Give grammar G(V, Σ, R, S) such that 
L(G) = {anbn : n ≥ 0}!
– V = {S, a, b}
– Σ = {a, b}
– R = {S → aSb, S → e}

• S → aSb | e is a shorthand for the two rules above
• A possible derivation is

S => aSb => aaSbb => aabb
– the first two steps used the rule S → aSb and the last 

used the rule S → e



Example

• Which words can derived at most in 4 steps with 
G = {V, Σ, R, S} grammar from S ?
– V = {a, b, A, B, S}
– Σ = {a, b} 
– R = {S → A, S → abA, S → aB, A → a, B → Sb}

• Solution:
– S =>G A =>G a
– S =>G aB =>G aSb =>G aAb =>G aab
– S =>G abA =>G aba
– S =>G aB =>G aSb =>G aabAb =>G aabab

327
Version 47
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Example

• Create a (partial) grammar for the English language
– V = {S, A, N, V, P}  Σ

• S stands for sentence, A for adjective, N for noun, 
V for verb, and P for phrase

– Σ = {Jim, big, green, cheese, ate}
• beware: here the elements of Σ are strings

– R = {P → N | AP, S → PVP, A → big | green, 
N → cheese | Jim, V → ate}
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Example

• The following are some strings in L(G)
– Jim ate cheese
– big Jim ate green cheese
– big cheese ate Jim

• Unfortunately, these are also strings in L(G)
- big cheese ate green green big green big cheese
- green Jim ate green big Jim
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Example

• Create grammar G which can generate mathematical 
statements such as (id*id+id)*(id+id)!
– id stands for any identifier such as variable name, 

reserved words of the language, or numerical 
constants
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Example

• G(V, Σ, R, E), where
– V = {+ ,* , (, ), id, T, F, E}

• E - expression, T - term, F - factor
– Σ = {+ , *, (, ), id}
– R = {E → E + T, (R1)

E → T, (R2)
T → T * F, (R3)
T → F, (R4)
F → (E), (R5)
F → id} (R6)
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Example

• Generation of (id*id + id) * (id + id)
– the course compilers helps to determine which rule 

should be used
E => T by Rule R2

=> T * F by Rule R3
=> T * (E) by Rule R5
=> T * (E + T) by Rule R1
=> T * (T + T) by Rule R2
=> T * (F + T) by Rule R4
=> T * (id + T) by Rule R6
=> T * (id + F) by Rule R4
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Example

=> T * (id + id) by Rule R6
=> F * (id + id) by Rule R4
=> (E) * (id + id) by Rule R5
=> (E + T) * (id + id) by Rule R1
=> (E + F) * (id + id) by Rule R4
=> (E + id) * (id + id) by Rule R6
=> (T + id) * (id + id) by Rule R2
=> (T*F + id) * (id + id) by Rule R3
=> (F*F + id) * (id + id) by Rule R4
=> (F*id + id) * (id + id) by Rule R6
=> (id*id + id) * (id + id) by Rule R6
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Regular grammars

• Definition of regular grammars, RG: such a CFG for 
which R  (V-Σ) × Σ*((V-Σ)  {e})
– there can be at most one non-terminal at right side of 

a rule, if there is, it must be at the right end
– R is reduced from (V-Σ) × V*

• Example: G = (V, Σ, R, S) is RG
– V = {S, A, B, a, b}
– Σ = {a, b}
– R = {S → bA | aB | e, A → abaS, B → babS}
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NFA ↔ RG

• Theorem: a language is regular ↔ it can be created by a 
RG

• Construction: →
– suppose that L is regular
– L is accepted by some NFA M(K, Σ, Δ, s, F)
– construct RG G(V, Σ, R, S) such that L(M) = L(G)

• V = K  Σ
– K will be the non-terminals of G

• R = {q → xp : (q, x, p)  Δ }  {q → e : q  F}
– for each transition from q to p on input x  Σ* 

we have in R the rule q → xp
• S = s
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• Proof:
–  w  L(M) ↔ (s, w) |-* (p, e), p  F by the definition 

of acceptance
– (s, w) |-* (p, e), p  F ↔ (p0, w1w2…wn) |-

(p1, w2…wn) |- … |- (pn, e), pn  F by the definition of 
the yield

• w = w1w2…wn, p0, ... pn  K, p0 = s, pn = p
– (p0, w1w2…wn) |- (p1, w2…wn), (p1, w2…wn) |-

(p2, w3…wn), … ↔  transitions (p0, w1, p1),
(p1, w2, p2), ...  Δ by the definition of the yield in one 
step

NFA ↔ RG
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–  (p0, w1, p1), (p1, w2, p2), ...  Δ ↔  rules: p0 →
w1p1, p1 → w2p2, ... by the construction of G

–  rules: p0 → w1p1, p1 → w2p2, ... ↔  p0 => w1p1 =>
w1w2p2 => … => w1w2…wnpn ↔ s =>* wpn by the 
definition of the one step derivation and the transitivity 
of yield

• p0, ... pn  V-Σ
– pn  F ↔  rule pn → e by the construction of G
– s =>* wpn,  rule pn → e ↔ s =>* w by the transitive 

property of yield
– s =>* w ↔ w  L(G) by the definition of acceptance

NFA ↔ RG
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Example

• Construct such a RG G = (V, Σ, R, S) which is equivalent 
with the given NFA!

– V = {a, b, P, Q}
– Σ = {a, b}
– R = {P → aP, P → bP, 

P → abaQ, Q → aQ, Q → bQ, Q → e}
– S = P

• Give the computation and derivation for w = ababb !
– (p, ababb) |- (q, bb) |- (q, b) |- (q, e)
– S = P => abaQ => ababQ => ababbQ => ababb
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Example

• Construct such a RG G = (V, Σ, R, S) which is equivalent 
with the given NFA!

– V = {a, b, A, B, S}
– R = {S → aS | bA, A → aB | bA, B → aS | bA, 

B → e, S → e} 



Version 47
340

NFA ↔ RG

• Construction: ←
– suppose L is generated by some RG G(V, Σ, R, S)
– construct NFA M(K, Σ, Δ, s, F) such that L(M) = L(G)

• K = (V-Σ)  {f}, where f  V
• Δ = {(A, w, B) : A → wB  R, A, B  V-Σ, w  Σ*} 

{(A, w, f) : A → w  R, A  V-Σ, w  Σ*}
• s = S
• F = {f}
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• Proof:
–  w  L(G) ↔ S =>* w by the definition of acceptance
– S =>* w ↔ A1 => w1A2 => w1w2A3 => … => 

w1w2…wn-1An => w1w2…wn by the definition of yield
• if w can be reached in n steps then these steps 

can be written down one by one
• A1, …, An  V-Σ, A1 = S, w = w1w2…wn

– A1 => w1A2 => w1w2A3 => … => w1w2…wn-1An => 
w1w2…wn ↔  A1 → w1A2, A2 → w2A3, ...  R by the 
definition of the one step derivation

NFA ↔ RG



Version 47
342

–  rules A1 → w1A2, A2 → w2A3, ... ↔   (A1, w1, A2), 
(A2, w2, A3), ...  Δ by the construction of M

–  (A1, w1, A2), (A2, w2, A3), ...  Δ ↔ (A1, w1w2…wn) |-
(A2, w2w3…wn) |- ... |- (An, wn) ↔ (S, w) |-* (An, wn) by 
the definition of the yield in one step

–  rule An → wn ↔    (An, wn, f)  Δ by the 
construction of M

–  (An, wn, f)  Δ ↔ (An, wn) |- (f, e) by the definition of 
the yield in one step

– (S, w) |-* (An, wn), (An, wn) |- (f, e)  ↔  (S, w) |-* (f, e) 
by the transitive property of yield

– (S, w) |-* (f, e), f  F ↔ w  L(M) by the definition of 
acceptance

NFA ↔ RG



Version 47
343

Example

• Construct such NFA M which is equivalent with the given 
RG G=(V, Σ, R, S)!
– V = {a, b, A, B, S}
– Σ = {a, b}
– R = {S → aA | bB | e, A → abS,

B → baS | a}
– S = S
– L(G) = (aab  bba)*(ba  e)

A
e

B

ba

b

aS

ab

f a
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Example

• Give the derivation and computation for w = aabbba !
– S => aA => aabS => aabbB => 

=> aabbbaS => aabbba
– (S, aabbba) |- (A, abbba) |-

|- (S, bba) |- (B, ba) |- (S, e) |- (f, e)
• Give the derivation and 

computation for w = bbaaab !
– S => bB => bbaS => bbaaA => bbaaabS => bbaaab
– (S, bbaaab) |- (B, baaab) |- (S, aab) |- (A, ab) |-

|- (S, e) |- (f, e)

A
e

B

ba

b

aS

ab

f a



Summary

• Context-free languages
• Context-free grammars
• Derivation
• Language generated by CFG
• Regular grammars
• NFA ↔ RG
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Next time
• Pushdown automata
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• Context-free languages
• Context-free grammars
• Derivation
• Language generated by CFG
• Regular grammars
• NFA ↔ RG
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Pushdown automata

• Pushdown automata
• Configuration
• Yield in one step
• Yield
• String accepted by PDA
• Language accepted by PDA
• State diagram
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Pushdown automata

• Not every context-free language can be recognized by a 
finite automaton
– some context-free languages are not regular
– e.g.: {anbn : n  N} 

• What extra features do we need to add to the finite 
automata so that they accept any context-free language?
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Pushdown automata

• Consider L = {wcwR : w  {a, b}*}!
– L can be generated by a CFG containing rules: 

S → aSa, S → bSb, S → c
– it seems any device capable accepting L must 

remember the first half of the input string so it can 
check it against the second half
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Pushdown automata

• The language of balanced parenthesis:
– G = ({S, (, )}, {(, )}, {S → e | SS | (S)}, S)

• What algorithm can decide this language?
– start counting at zero
– add one for every left parentheses
– subtract one for every right parenthesis
– reject a string if the count either goes negative at any 

time or ends up different from zero
• otherwise it should be accepted
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Pushdown automata

• The counter can be considered as a special case of a 
stack, on which only one kind of symbol can be written
– states cannot be used because the input can be 

longer than the number of states
• Rules of the regular grammar, e.g., A → aB, are easy to 

simulate by a finite automaton, as follows:
– if in state A reading 'a' go to state B
– see RG ↔ NFA

• What about a rule whose right-hand side is not a 
terminal followed by a non-terminal?
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Pushdown automata
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Pushdown automata

• Components of a pushdown automata (PDA):
– input tape with reading head

• each tape cell contains a symbol from Σ
• the tape is infinite to the right

– control unit 
• finite number of states

– stack with reading head
• last in first out (LIFO) data structure
• infinite capacity
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Pushdown automata

• Definition of pushdown automata, M: a six-tuple 
(K, Σ, Γ, Δ, s, F) where 
– K set of states (finite)
– Σ alphabet of the input symbols (finite)
– Γ alphabet of the stack symbols

• can be different from Σ
– Δ  (K×Σ*×Γ*) × (K×Γ*) transition relation

• according to book Δ  (K×(Σ  {e})×Γ*) × (K×Γ*)
– s  K initial state
– F  K set of final states
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Pushdown automata

• The meaning of transition relation:
– if ((p, α, β), (q, γ))  Δ
– then from state p, reading α, popping β M goes to 

state q while pushing γ
• if α = e, then the input is not consulted
• replaces β by γ on the top of the stack

• The PDA described here is non-deterministic
– there is deterministic PDA but it is not equivalent with 

the non-deterministic PDA
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• Stack operations
– push: a symbol is added to the top of the stack

• ((p, u, e), (q, a)) pushes 'a'
– pop: a symbol is removed from the top of the stack

• ((p, u, a), (q, e)) pops 'a'

Pushdown automata
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Pushdown automata

• Every finite automaton can be viewed as a pushdown 
automaton
– let M = (K, Σ, Δ, s, F) be an NFA
– let M' = (K, Σ, Ø, Δ', s, F) be a PDA

• Δ' = {((p, u, e), (q, e)) : (p, u, q)  Δ}
– M' does not consult its stack otherwise simulates the 

transition of M
– L(M) = L(M')
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Configuration

• Definition of configuration of a PDA M = (K, Σ, Γ, Δ, s, F): 
an ordered triple of the current state of M, the unread 
part of the input, and the whole stack
– it is an element of K×Σ*×Γ*
– there is no need to store the whole input because the 

reading head cannot go to the left, so, the already 
read input cannot affect the result

– e.g.: (q, bbb, abc)
• 'a' is at the top of the stack
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Yields in one step

• Definition of yield in one step of a PDA, |-M: a relation 
between two "neighboring" configurations
– formally:

• if x, y  Σ*, q, p  K, β, , γ  Γ*, 
((p, x, β), (q, γ))  Δ 

• then ((p, xy, β), (q, y, γ))  |- or
(p, xy, β) |-M (q, y, γ)

• we say: (p, xy, β) yields (q, y, γ) in one step
• If it is unambiguous that the yield corresponds to which 

PDA then the subscript M may be omitted

((p, x, β), (q, γ))  Δ 

(p, xy, β) |-M (q, y, γ)
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Computation

• Definition of computation by PDA M: a sequence of 
configuration C0, C1, ... Cn such that C0 |- C1 |- ... |- Cn

– e.g.: (q1, abaa, e) |- (q2, aa, xx) |- (q1, e, e)
– the length of a computation is the number of yield in 

one step applied
– the first and the last configuration can be connected 

with the yield in n steps relation, signed as |-n

• e.g.: (q1, abaa) |-3 (q3, a)
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Yield

• Definition of yield of a PDA, |-M*: the reflexive, transitive 
closure of  |-M

– if (q', w', α') can be reached from (q, w, α) through a 
number of yield in one step operation then the yield 
operation holds between (q, w, α) and (q', w', α')

• denoted as: (q, w, α) |-* (q', w', α')



Version 47
364

String accepted by PDA

• Definition of string accepted by PDA M: w  Σ* is 
accepted by M if (s, w, e) |-* (q, e, e), q  F
– the automaton is in final state
– the whole input is read
– the stack is empty
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String accepted by PDA

• The yield in PDA can lead to different configurations 
reading the same input
– there are possible branching at the computation of w
– if there is as much as one path to (q, e, e), q  F then 

w is accepted
• If PDA M cannot process the whole input because the 

missing transitions then w is rejected



Version 47
366

Language accepted by PDA

• Definition of language accepted by PDA M, L(M): the set 
of strings accepted by M
– L(M) = {w  Σ* : (s, w, e) |-M* (q, e, e), q  F}
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State diagram
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Example

• Design a pushdown automaton M to accept the 
language L = {wcwR : w  {a, b}*}!
– e.g.: ababcbaba  L, abcab, cbc  L        
– M = (K, Σ, Γ, Δ, s, F) where K = {s, f}, Σ = {a, b, c}, 

Γ = {a, b}, F = {f} and Δ is
• (1) ((s, a, e), (s, a))
• (2) ((s, b, e), (s, b))
• (3) ((s, c, e), (f, e))
• (4) ((f, a, a), (f, e))
• (5) ((f, b, b), (f, e))

– you may omit the inner parenthesis in a 
transition
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Example

• Transitions:
– 1, 4 corresponds to rule: S → aSa
– 2, 5 corresponds to rule: S → bSb
– 3 corresponds to rule: S → c

• Operation:
– in state s reads the first half of its input

• transitions 1 and 2 read w while pushing a 
corresponding stack symbols into the stack for 
each input symbol

– 'a' corresponds to 'a', b corresponds to b now
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Example

– switches state from s to f without consulting its stack, 
when M sees c in the input string

– in state f reads the second half of its input
• transitions 4 and 5 remove the top symbol from the 

stack, if the corresponding input symbol is read
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Example

• The input is accepted if
– the automaton can reach configuration (f, e, e)

• The input is rejected if
– not exactly one c is encountered
– in the second phase of operation the top stack symbol 

and the next input symbol does not match
– the stack and the input is not finished at the same 

time
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Example

• The emphasis is shifted from the meaning of the states 
to the meaning of the stack symbols
– there are fewer states but they still have meaning

• state s: we are before c
• state f: we are after c

– a symbol in the stack means that the same symbol 
must be at the corresponding position

• e.g.: ba in stack (b at the top) means that the word 
must finished with ba
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Example

4eef
5aaf
5babaf
3bbabbaf
2bbacbbas
2babcbbas
1abbcbbas
-eabbcbbas

Transition usedStackUnread inputState
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Example

• Design a pushdown automaton M to accept the 
language L = {wwR : w  {a, b}*} !
– M = (K, Σ, Γ, Δ, s, F), where K = {s, f}, Σ = {a, b}, 

F = {f} and Δ is the set of the following five transitions
• (1) ((s, a, e), (s, a))
• (2) ((s, b, e), (s, b))
• (3) ((s, e, e), (f, e))
• (4) ((f, a, a), (f, e))
• (5) ((f, b, b), (f, e))
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Example
• The language is very similar to the previous one but 

there is no way to determine the middle of the string
– with two complete read of the input it could be done 

easily because then you know the length of w
• In state s, M can non-deterministically choose either 

– to push the next input symbol onto the stack
– to switch to state f without consuming any input

• middle point has been reached
• Therefore even starting from a string of the form wwR, M 

has computations that do not lead it to the accepting 
configuration (f, e, e)
– but there is at least one that does
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Example
• Design a pushdown automaton M to accept 

L = {w  {a, b}* : w has the same number of 'a' and b} !
• M = (K, Σ, Γ, Δ, s, F), where K = {s, q, f}, Σ = {a, b}, 

Γ = {a, b, c}, F = {f}, and Δ is listed below
– (1) ((s, e, e), (q, c))
– (2) ((q, a, c), (q, ac))
– (3) ((q, a, a), (q, aa))
– (4) ((q, a, b), (q, e))
– (5) ((q, b, c), (q, bc))
– (6) ((q, b, b), (q, bb))
– (7) ((q, b, a), (q, e))
– (8) ((q, e, c), (f, e))

q

b↑b↓bb, b↑a

s

b↑c↓bc,

e↓c e↑c

a↑c↓ac, a↑a↓aa, a↑b

f
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Example

• Stack:
– there is a c on the bottom as a marker
– an 'a' in the stack indicates the excess of 'a' over b 

thus far read on the input tape
– b in the stack indicates the excess of b over 'a' thus 

far read on the input tape
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Example
• Operation:

– transition 1 perform initialization 
• puts M in state q and places c on the bottom of the 

stack
– in state q, when M reads 'a', M may

• push 'a' onto c (transition 2)
• push 'a' onto another 'a' (transition 3)
• pop b (transition 4)

– when reading a b from the input, M may
• push b onto c (transition 5)
• push b onto another b (transition 6)
• pop 'a' (transition 7)

– transition 8 ends the computation by popping c
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Example

Accepts8ef
4ceq

4bcaq
6bbcaaq
4bcbaaq

6bbcabaaq
Start a stack of b5bcbabaaq
Remove one 'a'7cbbabaaq
Start a stack of 'a'2acbbbabaaq
Bottom marker1cabbbabaaq
Initial configuration-eabbbabaas

CommentsTransitionStackUnread inputState

e
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Example

• Both transitions 2 and 3 pushes 'a' into the stack 
(similarly transitions 5 and 6 pushes b) so why not just 
use transition ((q, a, e), (q, a)) instead?
– because then M would be non-deterministic
– e.g., at (q, abaa, bc) both ((q, a, b), (q, e)) and 

((q, a, e), (q, a)) would be applicable
• the first transition is correct in the given 

configuration



Summary

• Pushdown automata
• Configuration
• Yield in one step
• Yield
• String accepted by PDA
• Language accepted by PDA
• State diagram
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Next time
• Pushdown automata and context-free grammars
• Languages that are and are not context-free
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Elements of the Theory of Computation

Lesson 9
3.4. Pushdown automata and context-free grammars

3.5. Languages that are and are not context-free

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com



Last time

• Pushdown automata
• Configuration
• Yield in one step
• Yield
• String accepted by PDA
• Language accepted by PDA
• State diagram
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Pushdown automata and context-free 
grammars

• CFG → PDA
• Simplicity
• PDA → CFG
• Closure properties
• Pumping theorem 2
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CFG → PDA

• Definition of leftmost derivation: such a derivation in which 
always the leftmost non-terminal is selected for substitution
– denote with: =>L

– e.g.: R = {S → AB, S → aA, A → a, B → Sb }
S =>L AB =>L aB =>L aSb =>L aABb =>L aaBb =>L

=>L aaSbb =>L aaaAbb =>L aaaabb
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CFG → PDA

• Theorem: for  CFG G = (V, Σ, R, S)  PDA M such that 
L(M) = L(G)

• Construction:
– M uses V as the stack symbols
– M mimics the leftmost derivation of G
– M = ({p, q}, Σ, V, Δ, p, {q})
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CFG → PDA

– Δ contains:
• (1) ((p, e, e), (q, S))

– M begins by pushing S (start symbol of G)
– M enters into state q

• (2) ((q, e, A), (q, x)), for  rule A → x  R
– if the topmost symbol, A, on the stack is non-

terminal then it is replaced by the right-hand 
side, x, of some rule A → x  R

• (3) ((q, a, a), (q, e)) for  a  Σ
– pops the topmost symbol from the stack 

provided that it is a terminal symbol that 
matches the next input symbol
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Example

• Give CFG G such that L(G)= {w  {a, b}* : w = xcxR} and
give the equivalent PDA!
– V = {S, a, b, c}
– Σ = {a, b, c}
– R = {S → aSa | bSb | c}
– remark: we have already constructed a PDA for this 

language
• let us call the previous PDA "plain" and the current 

"constructed"
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Example
– M = ({p, q}, Σ, V, Δ, p, {q}), with

• Δ = {((p, e, e), (q, S)), (T1)
((q, e, S), (q, aSa)), (T2)
((q, e, S), (q, bSb)), (T3)
((q, e, S), (q, c)), (T4)
((q, a, a), (q, e)), (T5)
((q, b, b), (q, e)), (T6)
((q, c, c), (q, e))} (T7)

e S
p q

e↑S↓aSa
e↑S↓bSb
e↑S↓c

c↑c
b↑b
a↑a

R = {S → aSa | bSb | c}
Σ = {a, b, c}
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State Unread Input Stack Transition Used

p abbcbba e -
q abbcbba S T1
q abbcbba aSa T2
q bbcbba Sa T5
q bbcbba bSba T3
q bcbba Sba T6 
q bcbba bSbba T3
q cbba Sbba T6 
q cbba cbba T4
q bba bba T7 
q ba ba T6 
q a a T6 
q e e T5 

• S =>L aSa =>L abSba =>L abbSbba =>L abbcbba 
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CFG → PDA

• Lemma: S =>L* wα ↔ (q, w, S) |-* (q, e, α) 
– α starts with non-terminal, w  Σ*, α  (V - Σ)V* {e}
– consider the original grammar and the constructed 

PDA M, q  F
• Proof: →, induction for the number of steps in the 

derivation
– basis step:

• 0 step derivation: S =>L* S → w = e, α = S 
• (q, w, S) |-* (q, w, S) by the reflexivity of |-*
• w = e, α = S → (q, w, S) |-* (q, e, α) by the 

pervious points



– induction step:
• S =>L* wα → 

S = u0 =>L* un = xAβ =>L un+1 = xγβ = wα by the 
transitivity of the derivation

– A is the leftmost non-terminal in un, x  Σ*
– A → γ  R

• S =>L* xAβ → (q, x, S) |-* (q, e, Aβ) by the 
induction hypothesis, w2 = x, α2 = Aβ

• A → γ  R →  ((q, e, A), (q, γ))  Δ by the 
construction, rule type 2

•  ((q, e, A), (q, γ))  Δ → (q, e, Aβ) |- (q, e, γβ) by 
the definition of yield in one step

• (q, x, S) |-* (q, e, Aβ), (q, e, Aβ) |- (q, e, γβ) → 
(q, x, S) |-* (q, e, γβ) by the transitivity of yield
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transitivity of the derivation

induction hypothesis

construction, rule type 2

definition of yield in one step

transitivity of yield



CFG → PDA

• (q, x, S) |-* (q, e, γβ) → (q, xy, S) |-* (q, y, γβ) by 
the end of input theorem

– y can be any string, but we select it such as
w = xy  Σ*

• xγβ = wα (first row), w = xy → xγβ = xyα → γβ = yα
– y is the starting terminal part of γβ

• (q, w, S) |-* (q, y, yα) by the previous two point
• (q, y, yα) |-* (q, e, α) by the construction, rule type 3
• (q, w, S) |-* (q, y, yα), (q, y, yα) |-* (q, e, α) →

(q, w, S) |-* (q, e, α) by the transitivity of yield

Version 47
393

end of input theorem

transitivity of yield

construction, rule type 3
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CFG → PDA

• Proof: if ←, induction for the number of type 2 transitions
– suppose (q, w, S) |-* (q, e, α)
– α starts with non-terminal, w  Σ*, α  (V - Σ)V* {e}
– basis step: 0 type 2 transition

• in (q, w, S) only type 2 transition is applicable 
(replacing S) so there can be only 0 total transition

• (q, e, S) |-* (q, e, S) → w = e, α = S 
• S =>L* S by the reflexivity of |-*
• S =>L* wα by the previous two points
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– induction step: 
• (q, w, S) |-* (q, e, α) → 

(q, xy, S) |-* (q, y, Aβ) |- (q, y, γβ) |-* (q, e, α) by the 
transitivity of yield

– w = xy  Σ*
– (q, y, Aβ) |- (q, y, γβ) the (n+1)th type 2 

transition
–  A → γ  R by the construction

• (q, xy, S) |-* (q, y, Aβ) ↔ (q, x, S) |-* (q, e, Aβ) by 
the end of input theorem

CFG → PDA

construction

transitivity of yield

end of input theorem
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• (q, x, S) |-* (q, e, Aβ) ↔ S =>L* xAβ by the 
induction hypothesis w2 = x, α2 = Aβ

• A → γ  R → xAβ =>L* xγβ by the 
definition of the one step derivation

• (q, y, γβ) |-* (q, e, α) with type 3 transitions (the 
type 2 transitions are already used up) →
(q, y, yα) |-* (q, e, α), γβ = yα, y  Σ* by the 
construction

• S =>L* xAβ, xAβ =>L* xγβ → S =>L* xγβ by the 
transitivity of derivation

• S =>L* xγβ, γβ = yα → S =>L* xyα
• S =>L* xyα, w = xy → S =>L* wα

CFG → PDA

induction hypothesis

definition of the one step derivation

construction

transitivity of derivation
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CFG → PDA

• Proof of the theorem:
– each language generated by a CFG is accepted by 

some PDA
– w  L(G) ↔ S =>L* w by the definition of acceptance
– S =>L* w  ↔ (q, w, S) |-* (q, e, e) by the lemma with 

α = e
– (p, w, e) |- (q, w, S) |-* (q, e, e) ↔ w  L(M) by the 

definition of acceptance and the construction of M
• use transition type 1 for the first step
• q  F according to the construction of M
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Simplicity

• Definition of simple PDA: for  ((q, a, β), (p, γ))  Δ
when q is not the starting state → β  Γ, |γ| ≤ 2
– the automaton always change the topmost stack 

symbol with e, one, or two other symbols
– "when q is not the start state" condition is important to 

start the computation when the stack is empty



Simplicity

• Theorem: for  PDA M(K, Σ, Γ, Δ, s, F)  a simple PDA 
M' such that L(M) = L(M')

• Construction: 
– M' = (K', Σ, Γ  {Z}, Δ', s', {f'})
– s', f' are new states
– Z is a new stack symbol signaling the bottom of the 

stack
– Δ' contains

• ((s', e, e), (s, Z))
• ((f, e, Z), (f', e)),  f  F
• all transitions of Δ (some violate simplicity)
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Simplicity

– eliminating transitions when more than one stack 
symbol is popped

• replace ((q, a, β), (p, γ))  Δ', β = C1C2…Cn

• with: 
((q, e, C1), (r1, e)),
((r1, e, C2), (r2, e)),

…
((rn-2, e, Cn-1), (rn-1, e)),
((rn-1, a, Cn), (p, γ))

– r1, r2,…rn-1 are new states
– pop Ci one by one
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Simplicity

– eliminating transitions when more than 1 stack 
symbols are pushed

• replace ((q, a, β), (p, γ))  Δ', γ = C1…Cn

• with
((q, a, β), (r1, Cn)),
((r1, e, e), (r2, Cn-1)),…
((rn-2, e, e), (rn-1, C2)),
((rn-1, e, e), (p, C1)),

• r1, … , rn-1 are new state
• push Ci one by one
• simplicity would allow that n = 2



Version 47
402

Simplicity

– eliminating transitions when the topmost stack symbol 
is not popped

• replace ((q, a, e), (p, γ))  Δ', q ≠ s'
• with ((q, a, A), (p, γA)),  A  Γ  {Z}

– popping and pushing A before pushing γ
» each potential transition is produced though 

probably only some of them is used
– in the previous step we made sure that only 1 

stack symbol is pushed (γ), now at most two 
can be pushed (γA)
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PDA → CFG

• Theorem: the language of each pushdown automaton is 
generated by some context-free language

• Construction :
– let M a PDA and M' the corresponding simple PDA
– we shall construct G(V, Σ, R, S) such that 

L(G) = L(M')
– V = S  Σ  <q, A, p>, q, p  K', A  Γ  {e, Z}

• <q, A, p> is a non-terminal representing a portion 
of the input string that might be read while M' 
moves from state q to state p and the net effect of 
the stack is popping A

• lots of these non-terminals will not be used
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– R contains
• S → <s, Z, f'>

– S can be any such string which is read by M' 
while moving from s to f' and while the net 
effect on the stack is popping Z

– M' contains Z in the stack in state s because 
((s', e, e), (s, Z))  Δ' 

– M' does not contain Z in the stack in state f' 
because ((f, e, Z), (f', e))  Δ',  f  F

PDA → CFG



• <q, B, p> → a<r, C, p> for ((q, a, B), (r, C))  Δ', 
for each p  K'

– transition ((q, a, B), (r, C)) has to be simulated
– we know that at state q, there is B at the top of 

the stack
» if another symbol is at the top of the stack 

then it is handled by another transition
– p is not defined by the transition so we regard 

each possibility
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PDA → CFG



PDA → CFG

– left side: string that is read while moving from 
state q to p and the net effect is popping B

– right side: 'a' concatenated by a string that is 
read while moving from state r to p and the net 
effect is popping C

– we arrive to state p in both cases
– the net effect is popping B in both cases

» in the second case B is changed to C first 
as ((q, a, B), (r, C)) dictates

– the same string is read in both cases
» the beginning of the string is 'a' as the 

transition dictates
Version 47
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<q, B, p> → a<r, C, p> 



PDA → CFG

• <q, B, p> → a<r, C1, p'><p', C2, p> 
for ((q, a, B), (r, C1C2))  Δ', for each p, p'  K'

– we handled each potential transition of a simple 
PDA

• <q, e, q> → e,  q  K 
– while remaining in state q without consulting 

the stack nothing is read
– eliminating the extra non-terminals
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• Constructed rules: ..., <q, B, p1> → a<r, C, p1>, 
<q, B, p2> → a<r, C, p2>, ...
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PDA → CFG

• Lemma: q, p  K', A  Γ  {e}, x  Σ*,
(q, x, A) |-M'* (p, e, e) ↔ <q, A, p> =>G* x

• Proof: induction on the length of the derivation of G or 
computation of M'
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PDA ↔ CFG

• Theorem: the class of languages accepted by PDA is 
exactly the class of languages generated by CFG

• Proof:
– the language of each CFG is accepted by some PDA
– the language of each PDA is generated by some CFG
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Closure properties

• Theorem: context-free languages are closed under union
– the union of such languages which are generated by 

two CFGs can be also generated by a CFG
• Construction: 

– let G1(V1, Σ1, R1, S1), G2 (V2, Σ2, R2, S2) are known 
CFGs

• V1-Σ1, V2-Σ2 are disjoint
– construct G such that L(G) = L(G1)  L(G2)

• V = V1  V2  {S}
• Σ = Σ1  Σ2

• R = R1  R2  {S → S1 | S2}
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Closure properties

• Proof: 
– the theorem uses the term closed because the 

constructed G is CFG as the two initial grammars
• R1, R2 and the new rules are all CFG rules 

– suppose w  L(G1)
• we could have supposed that w  L(G2)
• w  L(G1) ↔ S1 =>G1* w by the definition of 

acceptance
• S1 =>G1* w ↔ S1 =>G* w by the construction, R 

contains R1
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Closure properties

• S → S1  R by the construction
• S → S1  R ↔ S =>G S1 by the definition of =>G

• S =>G S1, S1 =>G* w ↔ S =>G* w by the transitivity 
of =>G* 

• S =>G* w ↔ w  L(G) by definition of acceptance
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Closure properties

• Theorem: context-free languages are closed under 
concatenation
– the concatenation of such languages which are 

generated by two CFGs can can be also generated 
by a CFG

• Construction: 
– let G1(V1, Σ1, R1, S1), G2(V2, Σ2, R2, S2) are known 

CFGs
• V1-Σ1, V2-Σ2 are disjoint

– construct G such that L(G) = L(G1)L(G2)
• V = V1  V2  {S}
• Σ = Σ1  Σ2

• R = R1  R2  {S → S1S2}
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Closure properties

• Proof: 
– the theorem uses the term closed because G is CFG 

as the two initial grammars 
• R1, R2 and the new rules are all CFG rules 

– suppose w1  L(G1), w2  L(G2)
• w1  L(G1) ↔ S1 =>G1* w1 by the definition of 

acceptance
• w2  L(G2) ↔ S2 =>G2* w2 by the definition of 

acceptance
• S1 =>G1* w1, S2 =>G2* w2 ↔ S1 =>G* w1, S2 =>G* w2

by the construction, R contains R1 and R2
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Closure properties

• S → S1S2  R by the construction
• S → S1S2  R ↔ S =>G S1S2 by the definition of 

=>G

• S =>G S1S2, S1 =>G* w1, S2 =>G* w2 ↔ S =>G* w1w2
by the transitivity of =>G*

• S =>G* w1w2 ↔ w1w2  L(G) by the definition of 
acceptance



Version 47
417

Closure properties

• Theorem: context-free languages are closed under 
Kleene star
– the Kleene star of such a language which is 

generated by a CFG can be also generated by a CFG
• Construction: 

– let G1(V1, Σ1, R1, S1) a known CFG
– construct G such that L(G) = L(G1)*

• V = V1  {S}
• Σ = Σ1

• R = R1  {S → SS1 | e}
– the theorem uses the term closed because G is CFG 

as the initial grammar 
• R1 and the new rules are all CFG rules 
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Closure properties

• Proof: 
– suppose w1, ..., wn  L(G1)

• w1  L(G1) ↔ S1 =>G1* w1 by the definition of 
acceptance

...
• wn  L(G1) ↔ S1 =>G1* wn by the definition of 

acceptance
• S1 =>G1* w1, ..., S1 =>G1* wn ↔ 

S1 =>G* w1, ..., S1 =>G* wn by the construction, R 
contains R1
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Closure properties

• S → SS1 | e  R by the construction
• S → SS1 | e  R ↔ S =>G SS1 =>G * SS1...S1 =>G

S1...S1 by the definition of =>G

• S =>G S1...S1, S1 =>G* w1, ..., S1 =>G* wn ↔ 
S =>G* w1...wn by the transitivity of =>G*

• S =>G* w1...wn ↔ w1...wn  L(G) by the definition of 
acceptance
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Closure properties

• Theorem: the intersection of a context-free language 
with a regular language is a context-free language

• Construction: 
– L is a context-free language, R is a regular language
–  PDA  M1(K1, Σ, Γ1, Δ1, s1, F1) such that L = L(M1) 
–  DFA M2(K2, Σ, δ, s2, F2) such that R = L(M2)
– idea: construct PDA M which carries out the 

computation of M1 and M2 in parallel and accept w if 
both automata would have accepted w

• M works as M1 but also keeps track the state of M2
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Closure properties

– let M(K, Σ, Γ, Δ, s, F)
• K = K1 × K2

• Σ = Σ1  Σ2

• Γ = Γ1

• s = (s1, s2)
• F = F1 × F2
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Closure properties

• Δ is defined by
– (((q1, q2), a, β), ((p1, δ(q2, a)), γ))

» ((q1, a, β), (p1, γ))  Δ1, q2  K2

» the 2nd component of the new state is 
determined by δ

– (((q1, q2), e, β), ((p1, q2), γ))
» ((q1, e, β), (p1, γ))  Δ1, q2  K2

» the 2nd component of the new state does not 
change if the head does not move
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Pumping theorem 2

• Definition of fanout of CFG G, Φ(G): the largest number 
of symbol at the right side of any rule in G
– e.g.: R = {S → AB | a, B → AAA | ab, A → ABBA | e}, 

Φ(G) = 4
• Parse tree: a graphical way to represent the derivation of 

a string
– the inner nodes are non-terminals, the root is S
– the arcs indicate the rules
– the leaves gives the string, it is also called the yield of 

the tree
• Theorem: the length of the yield of any parse tree with 

height h is at most Φ(G)h
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Pumping theorem 2
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Pumping theorem 2

• Proof by induction on h: 
– basis step: h = 1, 1 rule is applied so the maximum 

yield is Φ(G)
– induction step: 

• the root of a parse tree with height h+1 connects to 
at most Φ(G) smaller parse trees with height h

• according to the induction hypothesis the length of 
the yield of the smaller parse trees is no more than 
Φ(G)h

• the length of the yield of the original parse tree is 
Φ(G) * Φ(G)h = Φ(G)h+1
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Pumping theorem 2

• Corollary: the height of the parse tree of w  L(G) where 
|w| > Φ(G)n is greater than n
– n can be computed using |w| and Φ(G)
– the greatest n is interesting for us
– e.g. Φ(G) = 4, |w| = 65 → height > 3 = n, 43 = 64
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Pumping theorem 2

• Pumping theorem 2: let G be a CFG, long enough words 
in L(G) (|w| > Φ(G)|V-Σ|), has a form, w = uvxyz, v ≠ e,
y ≠ e, such that uvnxynz  L(G),  n ≥ 0

• Proof:
– let w  L(G) such that |w| > Φ(G)|V-Σ| and let T the 

parse tree of w with the smallest number of leaves
– according to the previous corollary the height of T is 

at least |V-Σ|+1 so the longest path has |V-Σ|+2 
nodes



Pumping theorem 2
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Pumping theorem 2

– only the end of a path can be terminal so the 
longest path contains |V-Σ|+1 non-terminal

– the longest path contains at least one non-terminal 
twice

• let this non-terminal signed with A
– there is a derivation of w

S =>* uAz =>* uvAyz =>* uvxyz
• where u, v, x, y, z  Σ*, A  V-Σ
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Pumping theorem 2

– there is also a derivation in G: A =>* vAy which can 
be  repeated several times (including 0) to generate 
new strings in L(G)

• the new strings has the form uvnxynz
• S =>* uAz =>* uxz
• S =>* uAz =>* uvAyz =>* uvxyz
• S =>* uAz =>* uvAyz =>* uv2Ay2z =>* uv2xy2z

– if vy = e →  parse tree for w with smaller number of 
leaves than T which contradicts the initial 
assumption

• if vy can be e → the theorem states nothing



Example

• G = ({S, A, B, a, b}, {a, b}, {S → bBa, A → aB | aa, 
B → aAb | bb}, S)
– S => bBa => baAba => baaBba => baabbba
– the theorem does not define u, v, x, y, z only states 

their existence
– the string is not long enough (Φ(G)|V-Σ| = 33) but the 

derivation contains B twice, thus the theorem holds 
anyway

– B =>* aaBb can be repeated
– u = b, v = aa, x = bb, y = b, z = a
– uv0xy0z = bbba, uv1xy1z = baabbba, uv2xy2z = 

baaaabbbba, ...
Version 47
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Languages that are not context-free

• Theorem: L = {anbncn : n ≥ 0} is not context-free
• Proof by indirection:

– let n > Φ(G)|V-Σ| / 3
– w = anbncn can be written in the form uvxyz, v ≠ e,

y ≠ e
– according to the pumping theorem uvixyiz  L,  i ≥ 0
– if either v or y contains two or three symbols from 

{a, b, c} → uv2xy2z contains letters in wrong order
• e.g.: a(ab)2bb(bc)2c

– if both v and y contain one type of symbol from {a, b, 
c} → uvixyiz can't contain equal number of 'a', b, c for 
some i

• e.g.: a(a)3bb(c)3c
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Closure properties

• The class of context-free languages is not closed under 
complementation or intersection 
– complementation was applied on DFA

• DFA is equivalent with NFA
• non-deterministic PDA (what we have used) is not 

equivalent with a deterministic PDA
– remember that finite automata intersection property 

used complementation
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Closure properties

• Theorem: context-free languages are not closed under 
intersection

• Proof by indirection:
– suppose context-free languages are closed under 

intersection
– L1 = {anbncm: m, n ≥ 0}, L2 = {ambncn: m, n ≥ 0} are 

context-free
– according the assumption L1  L2 = {anbncn: n ≥ 0} is 

also context free, but we have shown it is not
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Closure properties

• Theorem: context-free languages are not closed under 
complementation

• Proof by indirection:
– suppose languages are closed under 

complementation
– we have already proved that context-free languages 

languages are closed under union
– according to the De'Morgan identity and the previous 

two points context-free languages are closed under 
intersection which is not

• L1  L2 = (L1
C  L2

C)C
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Languages that are not context-free

• L = {anbmcndm : n ≥ 0} is not context-free
– the subscripts are in a wrong order, you would need 

two stacks
• L = {wcw : |w| ≥ 0} is not context-free

– PDA uses stack not queue



Summary

• CFG → PDA
• Simplicity
• PDA → CFG
• Closure properties
• Pumping theorem 2
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Next time

• The definition of a Turing machine
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Elements of the Theory of Computation

Lesson 10
4.1. The definition of a Turing machine

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com



Last time

• CFG → PDA
• Simplicity
• PDA → CFG
• Closure properties
• Pumping theorem 2
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The definition of a Turing machine

• Turing machine, TM
• Configuration
• Yield in one step
• Computation
• Yield
• Machine schema
• The basic machines
• Tape
• Other important machines
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Turing machine, TM

• Alan Turing (1912 –1954)
– English mathematician, logician, cryptanalyst, and 

computer scientist
– he was highly influential in the development of 

computer science
– providing a formalization of the concepts of 

"algorithm" with the Turing machine
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Turing machine, TM

• We have seen that some language cannot be accepted 
by PDA, e.g.: 
– L = {anbncn : n≥0} 
– L = {an : n is prime}
– L = {w  Σ : w has an equal number of 'a', b and c}

• Let us enhance the PDA to be able accept the previous 
languages
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Turing machine

• We will see that TM is the strongest automaton in terms 
of computing power
– any computation that can be carried out on a fancier 

type of automaton can be also carried out on a TM
• TM is designed to satisfy simultaneously the following 

criteria:
– should be automata
– should be simple to define formally and reason about
– should be the strongest in terms of computing power
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Turing machine

• Components of a TM:
– finite-state control unit
– tape, infinite to the right
– head for reading and writing, able to move in both 

directions
• Differences between PDA and TM:

– the head of a TM can move to the left
– TM can write on the tape
– TM does not have a stack

• though it can store data in the tape



Turing machine in action

• http://www.youtube.com/watch?v=cYw2ewoO6c4
• http://www.youtube.com/watch?v=E3keLeMwfHY
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Turing machine
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Turing machine
• Operation of a TM:

– the control unit operates in discrete steps
– each step performs two functions:

• put the control unit in a new state
• either:

– write a new symbol
» may be the same as the old one

– move the head one tape square to the left or to 
the right

– if a halting state is encountered then the TM stops
• does not matter if the whole input is read or not
• NFA can go on from final state
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Turing machine

• Special symbols
– ←, → denote the movement of the head

• these symbols are not members of any alphabet 
we consider

– ⊳ marks the leftmost end of the tape
• when the head reads a ⊳, it immediately moves to 

the right
• ⊳  Σ

– ⊔ marks the blank symbol
• the end of the tape is filled with ⊔
• ⊔  Σ
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Turing machine

• Definition of Turing machine M: a quintuple 
(K, Σ, δ, s, H), where
– K set of states (finite)
– Σ alphabet (finite) 

• containing ⊔, ⊳, not containing ←, →
– s  K the initial state
– H  K the set of halting states (finite)

• some say there is only one halting state
– δ transition function, (K - H) × Σ → K × (Σ  {←, →}) 

such that
•  q  K - H, if δ(q, ⊳) = (p, b) → b = →
•  q  K - H, a  Σ, if δ(q, a) = (p, b) → b ≠ ⊳
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Turing machine

• TM is deterministic 
• TM stops only when the machine enters a halting state
• ⊳ appears only at the left end of the tape

– it is never erased
– TM never writes ⊳
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Example

• Create TM M which changes all 'a' to ⊔ as it goes to the 
right, until it finds a tape square already containing ⊔!
– changing a nonblank symbol to the blank symbol is 

called erasing
– M = (K, Σ, δ, s, {h}), where

• K = {q0, q1, h}
• Σ = {a, ⊔ , ⊳}
• s = q0

• δ is given by the following table
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Example

q  δ(q, ) 
q0 a (q1,⊔)

q0 ⊔ (h, ⊔)
q0 ⊳ (q0, →)
q1 a (q0, a)
q1 ⊔ (q0, →)
q1 ⊳ (q1, →)

• Notice that in state q1 the input symbol is always blank 
nonetheless δ(q1, a) must be defined as the domain of δ 
is (K - H) × Σ
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Example

• Create TM M which scans to the left until it finds ⊔, if 
starts from ⊔ then halt at once!
– M = (K, Σ, δ, s, H), where

• K = {q0, h}
• Σ = {a, ⊔, ⊳}
• s = q0

• H = {h}
• δ is given by the following table



Example

• Unlike the previous automata, M may never stops 
– it happens if there is no ⊔ to the left
– in that case the head goes back and forth between 

the first and second symbol of the tape
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q  δ(q, ) 

q0 a (q0, ←)

q0 ⊔ (h, ⊔)

q0 ⊳ (q0, →)
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Configuration

• Definition of a configuration of TM M = (K, Σ, δ, s, H): an 
ordered triple of the current state of M and the whole 
tape
– the tape is partitioned into 2 parts

• until the head (including the head)
• after the head

– it is an element of K × ⊳Σ* × (Σ*(Σ - {⊔})  {e})
• the head position is defined by the second and 

third components
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Configuration

– the description of the tape always starts with ⊳ and 
never ends with ⊔

• (q, ⊳baa, bc⊔), (q, ⊔aa, ba) are not valid 
configurations

– the last character of the second element of the 
configuration is the head position

• e.g.: (q, ⊳a, aba), (h, ⊳⊔⊔⊔, ⊔a), (q, ⊳⊔a⊔b, e) the 
head is on 'a', ⊔, b respectively
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Configuration

– the second and third component of the configuration 
may be merged then the head position is marked with 
underline

• (q, wa, u) = (q, wau)
• (q, ⊳⊔a⊔⊔, e) = (q, ⊳⊔a⊔⊔)

– halted configuration: such configuration in which the 
state component is in H

– some partitions the tape into 3 parts: before the head, 
under the head, after the head
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Yield in one step

• Definition of yield in one step of a TM, |-M: a relation 
between two "neighboring" configurations 
– let

• M = (K, Σ, δ, s, H) be a Turing machine
• (q1, w1a1u1), (q2, w2a2u2) are configurations of M, 

a1, a2  Σ
– then (q1, w1a1u1) |-M (q2, w2a2u2) if and only if
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Yield in one step

–  δ(q1, a1) = (q2, b), b  Σ  {←, →}, and one of the 
following holds:

• b  Σ, w1 = w2, u1 = u2, a2 = b
• b = ←, w1 = w2a2, either

– u2 = a1u1, if (a1 = ⊔, u1 = e)C or
– u2 = e, if a1 = ⊔, u1 = e

• b = → , w2 = w1a1, either
– u1 = a2u2, if u1 ≠ e
– u1 = u2 = e, a2 = ⊔, if u1 = e

(q1, w1a1u1) |-M (q2, w2a2u2)



Version 47
460

Yield in one step

• Let a  Σ, w, u  Σ*, u does not end with ⊔; the yield in 
one step relation may hold between two configurations if
– M rewrites a symbol without moving its head

• b  Σ, w1 = w2, u1 = u2, a2 = b
• δ(q1, c) = (q2, d), a1 = 'c', b = 'd'
• e.g.: (q1, ⊳acdacdcca) |-M (q2, ⊳acdaddcca)
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– M moves its head one square to the left
• b = ←, w1 = w2a2, either

– u2 = a1u1, if (a1 = ⊔, u1 = e)C is true, or
– u2 = e, if a1 = ⊔, u1 = e

• δ(q1, c) = (q2, ←)
• e.g.: (q1, ⊳acdacdcca) |-M (q2, ⊳acdacdcca)
• w2a2u2 can be shorter than w1a1u1

– e.g.: (q1, ⊳acdacdcca⊔) |-M (q2, ⊳acdacdcca)
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– M moves its head one square to the right
• b = → , w2 = w1a1, either

– u1 = a2u2, if u1 ≠ e
– u1 = u2 = e, a2 = ⊔, if u1 = e

• δ(q1, a) = (q2, →)
• e.g.: (q1, ⊳acdacdcca) |-M (q2, ⊳acdacdcca)
• w2a2u2 can be longer than w1a1u1

– e.g.: (q1, ⊳acdacdcca) |-M (q2, ⊳acdacdcca⊔)
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Computation

• Definition of computation by TM M: a sequence of 
configuration C0, C1, ... Cn such that C0 |- C1 |- ... |- Cn

– e.g.: (q1, ⊳abaa) |- (q2, ⊳bbaa) |- (q1, ⊳bbaa) |-
(q3, ⊳baaa)

– the length of a computation is the number of yield in 
one step operation applied

– the first and the last configuration can be connected 
with the yield in n steps relation, denoted as |-n

• e.g.: (q1, ⊳abaa) |-3 (q3, ⊳baaa)



Version 47
464

Yield

• Definition of yield of a TM, |-M*: the reflexive, transitive 
closure of  |-M

– if (q', w', u') can be reached from (q, w, u) through a 
number of yield in one step operation then the yield 
operation holds between (q, w, u) and (q', w', u')

– denote as: (q, w, u) |-* (q', w', u')
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Example

• Consider again TM M which changes all 'a' to ⊔ as it 
goes to the right, until it finds a tape square already 
containing ⊔!
– (q1, ⊳⊔aaaa), (q0, ⊳⊔aaaa), (q1, ⊳⊔⊔aaa), 

(q0, ⊳⊔⊔aaa), (q1, ⊳⊔⊔⊔aa) is a computation of 
length 4

– (q1, ⊳⊔aaaa) |-* (q1, ⊳⊔⊔aaa)
– (q1, ⊳⊔aaaa) |-3 (q0, ⊳⊔⊔aaa)
– (q1, ⊳⊔aaaa) |-5 (q1, ⊳⊔⊔⊔aa) 
– (q1, ⊳⊔aaaa) |-2 (q0, ⊳⊔aaaa) 
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Machine schema

• Defining TM as a quintuple is cumbersome and hard to 
understand
– the table of the transition function is usually big

• A machine schema is such a TM which is constructed 
using already defined TMs as building blocks

• The notation is similar to the state diagram but instead of 
states the already defined TMs appear as nodes
– the arrows connecting the sub-TMs tell which sub-TM 

is to start after the current one stopped
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The basic machines

• Symbol writing and head moving machines: 
– for each a  Σ  {→, ←} – {⊳}, we define TM 

Ma = ({s, h}, Σ, δ, s, {h})
–  b  Σ - {⊳}, δ(s, b) = (h, a)

• but δ(s, ⊳) = (s, →)
– symbol writing machine if a  Σ
– head moving machine if a  {→, ←}
– these machines perform one step and halt

• except M← if it started from the second head 
position, right after ⊳

– shorthand: Ma = a, M← = L, M→ = R



The basic machines, a
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q  δ(q, ) 

s a (h, a)

s b (h, a)

s c (h, a)

s ⊔ (h, a)
s ⊳ (h, →)



The basic machines, b
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q  δ(q, ) 

s a (h, b)

s b (h, b)

s c (h, b)

s ⊔ (h, b)
s ⊳ (h, →)



The basic machines, c
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q  δ(q, ) 

s a (h, c)

s b (h, c)

s c (h, c)

s ⊔ (h, c)
s ⊳ (h, →)



The basic machines, L
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q  δ(q, ) 

s a (h, ←)

s b (h, ←)

s c (h, ←)

s ⊔ (h, ←)
s ⊳ (h, →)



The basic machines, R
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q  δ(q, ) 

s a (h, →)

s b (h, →)

s c (h, →)

s ⊔ (h, →)
s ⊳ (h, →)
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Example

• Operation of M: 
– start at M1, operate as M1 would until M1 would halt

• if the currently scanned symbol is 'a', initiate M2 
and operate as M2 would operate

• if the currently scanned symbol is b, initiate M3 and 
operate as M3 would operate

• if the currently scanned symbol is neither 'a' nor b 
then halt

– if M2 or M3 would halt then M halt
M1

a

b

M2

M3
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Machine schema

• Definition of machine schema: a triplet M = (m, η, Ms), 
where
– m set of TMs (finite) 

• common alphabet Σ and disjoint sets of states 
• m = {M1, M2, ..., Mn}

– Mi = (Ki, Σ, δi, si, Hi)
– η  m × Σ × m, defines the next TM
– Ms  m, starting TM
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Machine schema

• M = (m, η, Ms) = (K, Σ, δ, s, H)
– K = K0 ...  Kn  {r0, r1, …, rn, h} 

• r0, r1, …, rn are new states
• |m| = n

– s = ss

– H = {h}
• h is a new state
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Machine schema

– δ
• when imitating Mi

– if q  Ki, a  Σ, δi(q, a) = (p, b), p  Hi

– then δ(q, a) = (p, b)
• instead of halting Mi we go to a new state

– if q  Ki, a  Σ, δi(q, a) = (p, b), p  Hi

– then δ(q, a) = (ri, b)
» reading the last symbol of what Mi would 

have read
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Machine schema

• if η don't define a new TM then M halts
– if ri K (ri is a new state), a  Σ, (Mi, a) is not 

defined
– then δ(ri, a) = (h, a)

• if η defines a new TM then M starts to imitate it
– if ri K (ri is a new state), a  Σ, (Mi, a) = Mj, 

δj(sj, a) = (p, b)
– then (sj is skipped because ri acted as sj)

» δ(ri, a) = (p, b) if p  Hj

» δ(ri, a) = (rj, b) if p  Hj
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Machine schema
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Example

• R⊔ = ({R}, , R) is a machine schema
– R = ({q, h}, Σ, δR, q, {h})

• δR(q, a) = (h, R), for  a  Σ
– η(R, a) = R, η(R, b) = R, 

η(R, ⊔) = undefined
• R⊔ = ({q, r0, h}, Σ, δ, q, {h}) is a TM

– r0 is the new state
– δ(q, a) = (r0, R) for a  Σ (b rule)
– δ(r0, a) = (r0, R) if a ≠ ⊔ (d2 rule)

(h, a) if a = ⊔ (c rule)

R

a, b
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Tape

• When a schema transfer control from one TM to another 
the content of the tape and the position of the head does 
not change

• Standard form of a tape: the head is after the rightmost 
non-blank symbol
– e.g.: ⊔w⊔ where w  (Σ - ⊔)*
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Tape

• At constructing machine schema it is useful to leave the 
tape in a standard form so another schema may assume 
that it can start from this standard form
– not all machine apply this convention

• Definition of the initial configuration of TM M on input 
w  (Σ - {⊔, ⊳})*: (s, ⊳⊔w)
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Example

• Construct a machine schema which moves the head to 
the right by 2 squares!
– the schema moves its head right one square then if 

that square contains an 'a', b, ⊳, or ⊔, it moves its 
head one square further to the right
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Example

• An arrow labeled with several symbols is the same as 
several parallel arrows

• If an arrow is labeled by all symbols in the alphabet Σ, 
then the labels can be omitted, so M can be signed as
– >R → R
– >RR
– >R2
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Example

• Construct a machine schema that scans its tape to the 
right until it finds a blank!
– denote this machine by R⊔

– we can eliminate multiple arrows and labels by using 
label x ≠ ⊔ (x is not the letter 'x' but the currently read 
letter)
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Example

• Construct a machine schema that scans its tape to the 
left until it finds a blank!
– denote this machine by L⊔

– this TM never stops if there is no ⊔ to the left
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Copy machine

• Construct a machine schema that copies a string not 
containing ⊔!
– denote this machine by C
– C transforms ⊔w⊔ into ⊔w⊔w⊔, ⊔  w

• other strings may precede w
• blank denotes the beginning of the string
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c

⊔R
⊔ 2cL⊔ 2c

a

⊔R
⊔

2 aL
⊔

2 a
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Copy machine

– remember that C has several loop
• in each loop there is concrete symbol writing 

machine instead of x
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Copy machine

⊔abc⊔ ⊔abc⊔a ⊔ab⊔⊔ab⊔
⊔abc⊔ ⊔a⊔c⊔a ⊔ab⊔⊔ab⊔
⊔abc⊔ ⊔a⊔c⊔a ⊔ab⊔⊔abc
⊔⊔bc⊔ ⊔a⊔c⊔a⊔ ⊔ab⊔⊔abc
⊔⊔bc⊔ ⊔a⊔c⊔ab ⊔ab⊔⊔abc
⊔⊔bc⊔⊔ ⊔a⊔c⊔ab ⊔abc⊔abc
⊔⊔bc⊔a ⊔a⊔c⊔ab ⊔abc⊔abc
⊔⊔bc⊔a ⊔abc⊔ab ⊔abc⊔abc⊔
⊔⊔bc⊔a ⊔abc⊔ab
⊔abc⊔a ⊔ab⊔⊔ab 
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Example

• Construct a machine schema that shift a string not 
containing ⊔ to the right!
– denote this machine by S→

– S→ transforms ⊔w⊔ into ⊔⊔w⊔, ⊔  w
• other strings may precede w
• blank denotes the beginning of the string
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Example

• Construct a machine schema that deletes a string (not 
containing ⊔)!
– D transforms ⊔w⊔ into ⊔, ⊔  w
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Other important machines

• S← shift a string to the left
• La find the first occurrence of 'a' to the left
• Ra find the first occurrence of 'a' to the right



Summary

• Turing machine, TM
• Configuration
• Yield in one step
• Computation, Yield
• Machine schema
• The basic machines, Tape
• Other important machines
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Next time
• Computing with Turing machines
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Elements of the Theory of Computation
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4.2. Computing with Turing machines
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Last time

• Turing machine, TM
• Configuration
• Yield in one step
• Computation
• Yield
• Machine schema
• The basic machines
• Tape
• Other important machines
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Computing with Turing machines

• Turing computable function
• Representation of numbers with strings
• String accepted by TM
• Language accepted by TM
• Turing acceptable
• Turing decidable
• Algorithm
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Turing computable function

• Definition of the output of TM M on input w, M(w): 
if (s, ⊳⊔w) |-* (h, ⊳⊔y) → M(w) = y
– Σ0  Σ – {⊔, ⊳}, w, y  Σ0*, h  H
– M(w) is defined only if M halts on input w

• it is supposed that M leaves the tape in a specified 
format

• M(w) =  if M fails to halt on input w
– the output of DFA, NFA, and PDA was binary, they 

halted or not
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Turing computable function

• Definition of Turing computable function, f: Σ0* → Σ0*: 
 TM M such that M(w) = f(w),  w  Σ0*
– if M is started with input w, then when it halts, its tape 

contains f(w)
– we say that M computes f
– a Turing computable function is also called recursive 

function
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Turing computable function

• Is κ Turing computable? If it is, give the TM which 
computes it!
– κ: Σ* → Σ*, κ(w) = ww
– κ is computed by R⊔CS←

• position the head: ⊳⊔w → ⊳⊔w⊔
• copy the string: ⊳⊔w⊔ → ⊳⊔w⊔w⊔
• shift the copied string: ⊳⊔w⊔w⊔ → ⊳⊔ww⊔
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Representation of numbers with strings

• Unary representation
– one type of symbol is used to describe any number
– numUni: {I}* → N, numUni(In) = n 

• e.g.: numUni(III) = numUni(I3) = 3
• Binary representation

– numBin: 0  1{1, 0}* → N,
numBin(a1a2...an) = a12n-1+ a22n-2+...+ an

• e.g.: numBin(110) = 1*4+1*2+0 = 6
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Turing computable function

• Definition of Turing computable function, f: Nk → N:  TM 
M such that  w1,…,wk  Σ*, 
num(M(w1;…;wk)) = f(num(w1), …, num(wk))
– e.g.: num(Madd("5"; "3")) = add(num("5"), num("3"))
– if M is started with the representations of the integers 

n1,…,nk as input, then when it halts, its tape contains 
a string that represents number f(n1 ,…, nk)

– we say that M computes f
– a Turing computable function is also called recursive 

function
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Example

• Is succ Turing computable? If it is, give the TM which 
computes it!
– succ: N → N, succ(n) = n + 1
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Example

• Operation:
– M finds the right end of the input 
– goes to the left as long as it sees 1, changing all of 

them to 0
– when M sees a 0, it changes it into 1, goes to the right 

and halts
– if M sees ⊔ while looking for 0 then it shifts the whole 

string one position to the right, writes 1 at the left end, 
goes to the right end, and halts
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String accepted by TM

• Definition of string accepted by TM: w  Σ* is accepted 
by M if (s, ⊳⊔w) |-* (h, x, y), w  Σ0*, h  H
– w is accepted if M the computation halts
– w is rejected if M the computation never halts

• e.g.: M is in an infinite loop
– Σ0  Σ – {⊔, ⊳}
– the value of x and y is unimportant
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Language accepted by TM

• Definition of language accepted by TM M, L(M): 
L(M) = {w  Σ0* : (s, ⊳⊔w) |-* (h, x, y), w  Σ0*, h  H} 
– the set of strings accepted by M
– Σ0  Σ – {⊔, ⊳}
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Turing acceptable

• Definition of Turing acceptable language, L:  TM M 
such that L = L(M)
– we say M accepts or semi-decides L
– a Turing acceptable language is also called 

recursively enumerable
– M halts for  w  L, M(w) =  for  w  L
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Example

• Is L Turing acceptable? If it is, give the TM which 
accepts it!
– L = {w  {a, b}* : w contains at least one 'a'}

• Operation:
– M scans right until 'a' is encountered and then halts
– if no 'a' is found, the machine goes on forever into 

blanks that follow its input
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Turing decidable

• Definition of Turing decidable language, L:  TM M such 
that 
 w  L, (s, ⊳⊔w) |-* (h, ⊳⊔Y⊔), 
 w  L, (s, ⊳⊔w) |-* (h, ⊳⊔N⊔), h  H
– Y and N are new symbols
– we say M decides L
– M always halts, L(M) = Σ*
– a Turing decidable language is also called recursive
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Turing decidable

• Turing decidable can be also defined by introducing two 
new halting states: y, n
– accepting configuration: its halting state is y

• M accepts w if the initial configuration yields an 
accepting configuration

– rejecting configuration: its halting state is n
• M rejects w if the initial configuration yields a 

rejecting configuration
– M decides a language L if for  w  Σ0*

• if w  L then M accepts w
• if w ∉ L then M rejects w
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Characteristic function

• Definition of the characteristic function, χL of language L: 
χL(w) = Y if w  L, χL(w) = N otherwise
– Σ0  Σ – {⊔, ⊳}, L  Σ0* 
– χL: Σ0*→ {Y, N}

• χL - Greek chi
• Y, N  Σ0

– e.g.: χ{aa, bb, cc}(aa) = Y, χ{aa, bb, cc}(ab) = N   
• Theorem: a Turing machine with 2 or more tapes is 

equivalent with a simple Turing machine
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Turing decidable

• Theorem: L is Turing decidable ↔ χL Turing computable
• Proof:

– if L is decided by M (which is w  L → M(w) = Y)
– then χL(w) = Y, so the same M computes χL (which is 

M(w) = χL(w))
• Theorem: f: Σ0* → Σ0* is Turing computable ↔ 

Lf = { x,f(x) : x  Σ0*} is Turing decidable
– e.g.: f = plus1, Lplus1 = { "0,1", "1,2", "2,3", ...}
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Turing decidable

• Proof: →, example
– Lf = {opposite pairs, e.g.: black-white, good-bad, ...}
– Adam can give you the opposite for a given word
– Bell can decide if a pair, e.g., boy-tablet, is in Lf in the 

following way
• she asks Adam about the opposite of boy, it is girl
• girl is not tablet, so boy-tablet is not in Lf

f is Turing computable ↔ Lf is Turing decidable
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Turing decidable

• Proof: →
– suppose M computes f
– M' (a 2-tape TM) decides Lf in the following way

• search for ',' on the tape 1, T1: x,z, T2: e
• move z to tape 2, T1: x, T2: z
• simulate M on tape 1, T1: M(x), T2: z

– M(x) = f(x) because M computes f
• compare tape 1 and 2, (f(x) and z), write Y if they 

match, write N otherwise

f is Turing computable ↔ Lf is Turing decidable
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• Proof: ←, example
– idea: all possible output is considered so M' will halt 

eventually
– Lf = {w-wR, e.g., ba-ab, baa-aab, ...}
– Bell can decide if a pair is in L
– Adam can compute the reverse of a word, e.g., ab, in 

the following way
• Adam systematically asks Bell about each 

potential pair, where the first component is given, 
e.g., ab-e, ab-a, ab-b, ab-aa, ab-ab, ab-ba

Turing decidable

f is Turing computable ↔ Lf is Turing decidable
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• Proof: ←
– suppose M decides Lf

– M' (a 3-tape TM) computes f in the following way
• write w to T2 (original w, never changes)
• initialize T3 with e (the result possibilities)
• copy T2 ◦ , ◦ T3 to T1 (the work tape)
• simulate M on T1
• if M says Y → copy T3 to T1 and halt
• T3 := lexicographically next string of T3

– e, a, b, aa, ab, bb, aaa, ...
• go back to give new value to T1

Turing decidable

f is Turing computable ↔ Lf is Turing decidable



Turing decidable

• For each language L there is an equivalent function χL

• For each function f there is an equivalent language 
{x,f(x)}

• Corollary: Turing computable functions and Turing 
decidable languages are equivalent
– recursive functions and recursive languages are 

equivalent
– functions are an alternative way to describe 

languages (see µ-recursive functions)
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Example

• Construct a machine schema that decides 
L = {anbncn : n ≥ 0}!
– we proved that L is not context-free
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Example
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Example

• Operation:
– on input anbncn it will operate in n stages
– in each stage 

• M starts from the left end of the string 
• moves to the right in search of 'a'
• when it finds 'a', it replaces it by z 
• looks further to the right for b
• when it finds b, it replaces it by z
• looks further to the right for c
• when it finds c, it replaces it by z
• returns to the left end of the input
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Example

• Operation:
– if at any point the machine schema does not find the 

proper symbol then delete the input and write N to the 
tape

• e.g.: if M finds b when looking for 'a' → there is 
more b than 'a'

• It is easy to construct such a TM which accepts 
L = {anbncndn : n ≥ 0} 
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Algorithm

• Description of algorithm: a finite set of well-defined 
instructions for accomplishing some task which will 
terminate after a final number of steps
– there is no formal definition

• TM M that accepts a language L cannot be usefully 
employed for telling whether w is in L
– reason: if w ∉ L  → we will never know when we have 

waited enough for an answer
– M is not a representation of an algorithm

• TM M that decides a language L can be perceived as an 
algorithm
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Turing decidable languages

• Theorem: if language L is Turing decidable → L is Turing 
acceptable

• Proof:
– TM M decides L
– the machine schema below accepts L
– if M results in ⊳⊔Y⊔ → the schema halts
– if M results in ⊳⊔N⊔ → the schema does not halt
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Turing decidable languages

• Theorem: if language L is Turing decidable ↔ LC is 
Turing decidable

• Proof:
– TM M decides L
– the machine schema below decides LC

– if M results in ⊳⊔Y⊔ → the schema results ⊳⊔N⊔
– if M results in ⊳⊔N⊔ → the schema results ⊳⊔Y⊔
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Turing decidable languages

• Theorem: if both L and LC are Turing acceptable ↔ L is 
Turing decidable

• Proof:
– →

• TM M1 accepts L, M2 accepts LC

• construct a 2-tape TM which simulates M1 on tape 
1 and M2 on tape 2 in parallel

– execute one step of M1 then one step of M2, 
and so on (time sharing)

– if M1 is to performed fully first and the input is in 
LC → M1 never stops, so this is a wrong 
strategy
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Turing decidable languages

• Proof:
– →

• if M1 halts, write ⊔Y⊔ to the tape and halt
• if M2 halts, write ⊔N⊔ to the tape and halt

– ←
• if L Turing decidable → L Turing acceptable
• if L Turing decidable → LC Turing decidable
• if LC Turing decidable → LC Turing acceptable



Summary

• Turing computable function
• Representation of numbers with strings
• String accepted by TM
• Language accepted by TM
• Turing acceptable, decidable
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Next time
• The Church-Turing thesis
• Universal Turing machines
• The halting problem
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Last time

• Turing computable function
• Representation of numbers with strings
• String accepted by TM
• Language accepted by TM
• Turing acceptable
• Turing decidable
• Algorithm
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TM

• The Church-Turing thesis
• Universal TM
• Unary encoding
• Binary encoding
• The halting problem
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The Church-Turing thesis

• By keeping extending the language acceptors we have 
reached the TM
– we have demonstrated the wide range of tasks 

solvable by TM
– several enchantment (multiple tape, random access 

memory, non-deterministic behavior) do not increase 
the computational capability of the TM
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The Church-Turing thesis

• By keeping extending the language generators the 
unrestricted grammars can be reached

• µ-recursive functions is also a representation of 
languages
– µ-recursive functions, TMs, and unrestricted 

grammars are equivalent
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The Church-Turing thesis

• Church-Turing thesis: any algorithm can be performed 
by a TM provided that sufficient time and storage space 
are available 
– it is a thesis and not a theorem because TM is a 

mathematical concept but algorithm is not
• it cannot be proved 
• could be disproved by introducing such a 

reasonable machine which is capable to solve 
such problems which cannot be done with TM
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The Church-Turing thesis

• We regard something as algorithm if it can be 
represented by such TMs which halt on every input
– TMs accepting languages cannot be regarded as 

algorithms
• they do not halt on every input
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The Church-Turing thesis

• We have shown previously that there are uncountable 
languages but only countably infinite representation
– not every language can be represented
– deciding if w is such a language is an unsolvable 

problem
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The Church-Turing thesis

• The cardinality argument (there are countably infinite 
language representation but uncountable languages) 
proves only the existence of unsolvable problems
– finding an actual unsolvable problem is our current 

aim
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Universal TM

• TM cannot be programmed
– its program is hardwired into the transition function

• Definition of universal TM, U: such a TM which is 
capable of simulating any TM
– U can be programmed as any computer
– the program and the input of the program can be 

given on the tape of U
– U is still a TM
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Universal TM

• The program of U is the encoding of a TM
– hardware and software are equivalent (Neumann 

principle)
– ρ(M) the encoding of TM M (rho of M)
– ρ(w) the encoding of string w

• U(ρ(M)ρ(w)) = ρ(M(w))
– U gives the same result in encoded form what its 

program (M) would give processing the program's 
input (w)

– beware: M's input is w, U's input is the encoded form 
of M and w
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Unary encoding

• If TM M = (K, Σ, δ, s) → 
ρ(M) = cS0cSq1,a1Sq1,a2 ... Sq1,a|Σ|Sq2,a1Sq2,a2 ... Sq|K|,a|Σ|

– S0 encodes the initial state, S0 = λ(s)
– Sqp,ar encodes values of the transition function

δ(qp, ar) = (qp', ar')
• Sqp,ar = cw1cw2cw3cw4, where

– w1 = λ(qp)
– w2 = λ(ar)
– w3 = λ(qp')
– w4 = λ(ar')

• The encoding of string w = b1b2 ... bn: 
ρ(w) = cλ(b1)cλ(b2)c ... cλ(bn)c

q  δ(q, ) 
q1 a (q0, ←)
q1 ⊔ (h, ⊔)
q1 ⊳ (q0, →)
q2 a (q1, →)
...
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Unary encoding

• Encoding of the alphabet and states of the program:
– to decide what I3 does mean, its position must be 

checked
• at w1, w3 it is q2

• at w2, w4 it is a1

states

alphabet

σ λ(σ)

h

L

R

ai

qi

I

II

I

Ii+2

Ii+1
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Unary encoding

• Example:
– M = {K, Σ, δ, s, {h}}

• K = {h, q2}
• Σ = {a1, a3, a6}
• s = q2 ↔ III
• transition function

– δ(q2, a1) = (h, a3) ↔ cIIIcIIIcIcIIIIIc
– δ(q2, a3) = (q2, R) ↔ cIIIcIIIIIcIIIcIIc
– δ(q2, a6) = (q2, R) ↔ cIIIcIIIIIIIIcIIIcIIc

– ρ(M) = cI3ccI3cI3cIcI5ccI3cI5cI3cI2ccI3cI8cI3cI2cc
• cc signals the start of some Sqp,ar

states

alphabet

σ λ(σ)

h

L

R

ai

qi

I

II

I

Ii+2

Ii+1



Version 47
541

Unary encoding

• In the example Σ is not {a1, a2, a3}, why?
– suppose a machine schema is to be executed by U
– each TM of the schema may have different Σ
– U has to represent every possible character

• create the union of all Σ and number the elements
• create new indices to the elements
• these new indices are used
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Unary encoding

• In general, U can execute any TM so it has to represent 
every possible character
– the Σ of U still {c, I}

• λ is the unary encoding
• Similar argument holds for K
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Binary encoding

• If TM M = (K, Σ, δ, s, H) → 
ρ(M) = Sq1,a1Sq1,a2 ... Sq1,a|Σ|Sq2,a1Sq2,a2 ... Sq|K|,a|Σ|

–  i, j  N such that, 2i > |K|, 2j > |Σ|
– Sqp,ar encodes values of the transition function

δ(qp, ar) = (qp', ar')
• Sp,r = (w1,w2,w3,w4) where

– w1 = λ(qp)
– w2 = λ(ar)
– w3 = λ(qp')
– w4 = λ(ar')



Version 47
544

Binary encoding

• Encoding of the alphabet and states of the program:
– qk qnumBin(k)

• q followed by a binary number of length i
• the actual encoding is not given here
• the start state is always q0i

– ⊔ a0j

– ⊳ a0j-11
– ← a0j-110
– → a0j-111
– ak anumBin(k+3)

• 'a' followed by a binary number of length j
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• Example:
– consider TM M = (K, Σ, δ, s, {h})

• K = {s, q, h}, Σ = {⊔, ⊳, a} 
• δ and the state, symbol encoding are given in 

these tables (i = 2, j = 3)

s

q

h

state/
symbol

represen-
tation

a

⊳

→

→

q00

q01

011

a000

a001

a010

a100

a011

П

Binary encoding
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Universal TM

• U is implemented with a 3-tape TM
– tape 1: encoding of the tape of TM M to be simulated

• initially: ρ(w), the input of the algorithm
– tape 2: encoding of the TM M to be simulated

• ρ(M) is the program
– tape 3: encoding of the current state of TM M during 

the simulation
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Universal TM
• Operation:

– initially the input of U, ρ(M)ρ(w), is on the tape 1
– ρ(M) is copied to the tape 2, ρ(w) is shifted to the left
– the starting state is written onto tape 3
– head 1 moves in accordance with the head of M 

• initially it is on the 2nd square where the encoding 
of the 1st symbol of w starts

– head 2 searches for such a transition which 
corresponds to the actual simulated state and the 
actual scanned simulated symbol

– according to the transition either the scanned 
simulated symbol is changed or head 1 is moved



Universal TM
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The halting problem

• Remember the diagonalization principle
– the complement of the diagonal differs from each row

• Some seemingly correct definition can be contradictory
– e.g.: (Bob) the barber cuts the beard for those people 

(condition:) who does not do it for himself 
• Adam cuts his own beard so Bod does not do it
• Clarence does not cut his own beard so Bob cuts it



Version 47
550

The halting problem

– does Bob cut his own beard?
• suppose no: the condition is true for Bob, thus, the 

barber cuts his beard according to the definition, 
contradiction is reached

• suppose yes: the condition is false for Bob, thus, 
the barer does not cut his beard according to the 
definition of barber, contradiction is reached

• The set of people whose beard is cut by Bob
– the above definition is contradictory
– a mathematical system is either incomplete or 

contradictory
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The halting problem

• halts(P, X): such a program which returns yes if the 
program P would stop on input X, otherwise it returns no
– halts(P, X) always stops
– halts(P, X) would be very useful for debuging

• Theorem: halts(P, X) does not exist
– function "halts" is not Turing computable

• Proof by indirection:
– assume halts(P, X) does exist
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The halting problem

– construct diagonal(X)
• such a program which loops forever if program X 

would stop on input X, otherwise it stops
diagonal(X)

a: if halts(X, X) then goto a:

else stop

– let X = diagonal
• start diagonal(diagonal)
• will diagonal(diagonal) stop?
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The halting problem

• if halts(diagonal, diagonal) = true → 
– diagonal does not stop because the goto

statement loops forever
– diagonal stops according to the definition of 

halts(P, X) 
• if halts(diagonal, diagonal) = false→ 

– diagonal stops in the else branch
– diagonal does not stop according to the 

definition of halts(P, X)
– contradiction reached in both cases, so, halts(P, X) 

does not exist



Version 47
554

The halting problem

• Theorem: language H corresponding to halts(P, X) is not 
Turing decidable 
– H = {ρ(M)ρ(w) : TM M halts on input w}

• H contains strings with two components, the first is 
the encoding of a program, the second is the 
encoding of its input, moreover the program halts 
on the given input

– H is Turing acceptable as it is accepted by U
• the input of U is a program and its input
• according to U's definition if the program halts then 

U also halts
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The halting problem

• Proof:
– assume H is Turing decidable
– H2 = {ρ(M)ρ(M) : TM M halts on input w} is a subset of 

H
– H1 = {ρ(M) : TM M stops on input ρ(M)} 
– H2 can be transformed into H1 by halving the string
– H1 is a subset of H
– if H is Turing decidable → H1 also Turing decidable

• H1 corresponds to halts(X, X)
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The halting problem

– if H1 Turing decidable → H1
C also Turing decidable 

(theorem)
• H1

C = {w : w is not the encoding of a TM, or w = 
ρ(M) but M does not halt on input ρ(M)} 

– corresponds to diagonal(X)
– H1

C is not even Turing acceptable
• suppose M* accepts H1

C
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The halting problem

• is it true that ρ(M*)  H1
C (will diagonal(diagonal) 

stop?)
– ρ(M*)  H1

C 

» M* does not halt on input ρ(M*) according to 
the definition of H1

C

» M* accepts H1
C → M* does halt input on 

ρ(M*) by the definition of acceptance



Version 47
558

The halting problem

– ρ(M*)  H1
C 

» M* halt on input ρ(M*) according to the 
definition of H1

C

» M* accepts H1
C → M* does not halt input on 

ρ(M*) by the definition of acceptance
– contradiction reached → M* does not exist

– H1
C seems to be nicely defined by a property but its 

property cannot be checked
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The halting problem

• Theorem: the class of Turing decidable languages is a 
strict subset of the class of Turing acceptable languages

• Proof: H is Turing acceptable but not Turing decidable
• Theorem: the class of Turing acceptable languages is 

not closed for complementation
• Proof: H1 is Turing acceptable but H1

C is not



Version 47
560

The halting problem

• Definition of undecidable problems: such problems for 
which no algorithm exists
– no TM M exists which can decide if w is in L or not

• The most famous undecidable problem is the halting 
problem
– both the TM and its input is arbitrary
– if a fixed TM is considered then it may be decidable

• Other undecidable problems:
– deciding whether multivariable polynomial equation 

has a solution in integers (Hilbert's tenth problem)
– tiling problem



Summary

• The Church-Turing thesis
• Universal TM
• Unary encoding
• Binary encoding
• The halting problem
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The exam

• One of six initial questions:
– RG ↔ NFA (two proofs)
– NFA → DFA (two proofs)
– CFG → PDA (two proofs)

• The exam is failed if the initial question is failed
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The exam

• Check the download material in moodle
• Do not be surprised when I ask what grade is your aim
• Have a favorite question
• Have the lecture notes, sometimes it is enough to 

explain something, so you do not have to write it down
• Be ready for questions from the last lecture too
• If you failed the exam, next time know what you did not 

know before
• Be prepared for examples
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