
 Főkedvezményezett:
Pannon Egyetem
8200 Veszprém
Egyetem u. 10.

Kedvezményezett:
 Szegedi Tudományegyetem

 6720 Szeged
 Dugonics tér 13.

A felsőfokú informatikai oktatás
minőségének fejlesztése,
modernizációja

TÁMOP-4.1.2.A/1-11/1-2011-0104

2014

Dr. Heckl István:

Theory of Digital Computation lecture notes

Version 47
2

Elements of the Theory of Computation

Lesson 1
1.1. Sets

1.2. Relations and functions
1.3. Special types of binary relations

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com

Version 47
3

Subject information

• Lecturer: Dr. István Heckl, Istvan.Heckl@gmail.com
• http://oktatas.mik.uni-pannon.hu/

– registration
– course: Theory of the elements of computation

Version 47
4

Subject information

• Exercise book:
– the whole lecture should be written down
– use exercise book (not sheets) and pen
– number each page
– write date, lecture number, signature for each lecture
– each lecture should start on a new page

Version 47
5

Subject information

• Subject code:
– VEMISA3244D

• Signature: at least 50% result at ZH
• Subject name in Hungarian: A digitális számítás elmélete
• Literature: Harry R. Lewis, Christos H. Papadimitriou:

Elements of the Theory of Computation, Prentice Hall,
Inc., 1998. (second edition)
– this presentation is based on this book

• Irodalom: Bach Iván, Formális nyelvek

Version 47
6

Subject information

Theory of the
elements of
computation

Programming I.

Programming II.

Compilers

Computer
architectures

Foundations of
Programming

Foundations of
Computer Science

Advanced
Programming
Techniques

Software
Engineering

Java Programming

Data Structures
and Algorithms

Project Laboratory

Advanced
System Design

Version 47
7

Scope

• The theory of computations tries to answer the question:
what is an algorithm?
– algorithm theory examine given algorithms
– we would like to know what is algorithm in general
– e.g.:
input x

while x > 10

x = x – 3

end

Version 47
8

Scope

• Does it halt?
input x

x = x * 2

while x is even

x = x * 2

end

• Does it halt?
input x

repeat

if x is even x = x /2

else x = x*3+1

until x > 1

Version 47
9

Scope

• Any algorithm can be seen as a language
– the words of a language: (input1, output1),

(input2, output2), ...
– a language can be recognized by an automata
– we keep learning more and more complex classes of

languages
• The subject

– shows how automata (e.g.: computers) work
– is the basis for writing compilers

• e.g.: C++ compiler

Version 47
10

Scope

• ADC (Automata Drawing and Converting Tool) can be
found in the Moodle

Version 47
11

Scope

• We need exact terms for languages, grammars,
computation, algorithms, ...
– no exact term for algorithms

• We need to know what the unsolvable problems are,
what the very hard problems are, what problems can be
solved easily
– halting problem is unsolvable
– traveling salesman is NP complete

Version 47
12

Scope for programmers

• Simple decisions: based solely on inputs
– e.g.: if the outside temperature is lower than 6 °C I

take a hat
– there can be many inputs

• Complex decisions: based on inner state and on inputs
– e.g.: the outside temperature is lower than 6 °C but I

also know that dad will take me to school by car so I
do not take a hat

Version 47
13

Onion diagram of topics

Version 47
14

Content: Introduction

1. Sets, Relations and functions, Special binary relations
2. Finite and infinite sets, Three fundamental proof

techniques, Closures and algorithms
3. Alphabets and languages, Finite representations of

languages

Version 47
15

Content: Finite automaton

4. Deterministic finite automata
5. Non-deterministic finite automata
6. Finite automata and regular expressions, Languages

that are and are not regular

Content: Context-free languages

7. Context-free grammars
8. Pushdown automata
9. Pushdown automata and context-free grammars,

Languages that are and are not context free

Version 47
16

Content: Turing machines

10. The definition of a Turing machine
11. Computing with Turing machines
12. The Church-Turing thesis, Universal Turing machine,

The halting problem

Version 47
17

Introductions 1

• Boolean algebra
• Sets
• Sets operations
• Relations and functions
• Special types of binary relations

Version 47
18

Version 47
19

• Statements can be: true or false
• Examples:

– the word "watermelon" has more e than o: true
– the word "watermelon" starts with z: false

• George Boole (1815-1864)
– English mathematician and philosopher
– the inventor of Boolean logic, the basis of modern

digital computer logic

Boolean algebra

Version 47
20

Boolean algebra

• Boolean operators:
– combines two statements or modify a single

statement
– and, or, not, xor, xand (=), nor, nand, implication

Version 47
21

Boolean algebra

a b ~a and or xand,
=

xor,
^ nand nor impl,

→

0 0 1 0 0 1 0 1 1 1

0 1 1 0 1 0 1 1 0 1

1 0 0 0 1 0 1 1 0 0

1 1 0 1 1 1 0 0 0 1

Boolean algebra

• Symbols:
– a = blue-eyed
– b = long-haired
– c= blonde

• Formulate your statement:
– S1 = b or (a and c)
– S2 = a and b and c

Version 47
22

a b c

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

S1

0

0

1

1

0

1

1

1

S2

0

0

0

0

0

0

0

1

Version 47
23

Sets

• Description of set: collection of objects
– collection = set
– objects = elements
– e.g.: L = {a, b, c, d}, S = {colors}

• Sets do not contain repetitions of elements
– {red, blue, red} is not a proper set

• Order of elements is unimportant
– {1, 3, 9} = {9, 3, 1} = {3, 1, 9}

• Elements can be sets too:
– {2, red, {blue, d}}

• Automata are defined with sets

Version 47
24

Sets

• A set can be specified:
– listing all its elements

• infinite sets cannot be defined in this way
• e.g.: M = {xx, yy, zz}

– giving a property which holds for every element
• such property does not always exist
• e.g.:

– K = {x  N : x is not divisible by 2}
– A = {words, that contain 'a'}

Version 47
25

Nomenclature

• Sets:
– b L:

• b is an element of set L
– z L:

• z is not an element of set L
– |L| is the cardinality of set L

• Definition:
– read '→' as then
– read ',' as and
– read '↔' as if and only if

a, b,
c, d

set L

Version 47
26

Sets

• Two sets are equal:
– if and only if they have the same elements

• Definition of singleton: a set with one element
– |L| = 1
– e.g.: L = {a}

• Definition of empty set: a set with no element
– |L| = 0
– e.g.: L = Ø or L = {}
– beware: Ø = {} ≠ { {} }

A B

Version 47
27

Sets

• Neumann onions:
– 0 = {}
– 1 = { {} }
– 2 = { {{}} }
– ...

• János Neumann (1903 –1957)
– Hungarian mathematician

Ø

Version 47
28

Sets

• Definition of subset: A is the subset of B, if each element
of A is also in B
– notation: A  B

• Properties:
– any set is subset to itself
– if A  B, A ≠ B → A is a proper subset of B

• notation: A  B
– A = B ↔ A B, B A
– Ø is the subset of every set

BA

Version 47
29

Sets

• Give an algorithm for checking if x is an element of A!

elementTest(x, A)

for i = 0 to |A|-1

if A[i] == x

return true

return false 

Sets

• True or false
– 5  {5, 6, 7}
– 6  {5, 7, 9}
– {5, 6}  {5, 6, {5, 6}}
– {5, 6}  {5, 6, 7}
– a  {{a}}
– {a, b}  {a, b}
– {a, b}  {a, {a, b}, b}
– Ø  Ø
– Ø  {Ø}

Version 47
30

Version 47
31

Sets

• Give an algorithm for checking if A is a subset of B!

subsetTest(A, B)

for i = 0 to |A|-1

if elementTest(A[i], B) == false

return false

return true 

Sets

• True or false
– {5, 6}  {5, 6, 7}
– {6, 8}  {5, 6, 7}
– {a, b}  {a, b}
– {a, b}  {a, b, {a, b}}
– a  {a, b, {a, b}}
– Ø  Ø
– Ø  {Ø}

Version 47
32

Version 47
33

Set operations

• Definition of union: a set which contains all the elements
of two sets
– A  B = {x : x A or x B}
– e.g.:

• {red, green}  {blue} = {red, green, blue}
• {1, 3, 9}  {3, 5, 7} = {1, 3, 5, 7, 9}

– an important property: the finite automata is closed
under the union operation

Version 47
34

Set operations

• Definition of intersection: a set which contains the
elements which are common in two sets
– A B = {x : x A and x B}
– e.g.:

• {1, 3, 9}  {3, 5, 7} = {3}
• {red, green}  {blue} = Ø

Version 47
35

Set operations

• Definition of difference between A and B: a set which
contains all elements of A that are not in B
– A \ B = {x : x A and x B}
– e.g.:

• {1, 3, 9} \ {3, 5, 7} = {1, 9}
• {red, green} \ {blue} = {red, green}

Version 47
36

Set operations

• Definition of disjoint sets: sets with no common element
– A B = Ø
– e.g.:

• A = {1, 4, 33}, B = {2, 6, 12}
• A = {dogs}, B = {cats}

• Definition of complementer set:
– AC = {x: x is element of base set, but x is not element

of A}
– e.g.: B = {1, 3, 5}, A = {1, 3}, A  B and AC= {5}

B
A

Set operations

• Set operations with more than two sets:
– L: the set, whose elements are the elements of the

sets in L
• L = {{a, b}, {b, c}, {c, d}}
• L = {a, b}  {b, c}  {c, d} = {a, b, c, d}

– L: the set, whose elements are the common
elements of the sets in L

• L = {{a, b}, {b, c}, {b, d}}
• L = {a, b} {b, c}  {c, d} = {b}

Version 47
37

Version 47
38

Set operations

• Questions:
– A = {1, 3, 5, 6, 7}
– B = {2, 3, 4, 5, 7}

– A B = {3, 5, 7}
– A  B = {1, 2, 3, 4, 6, 7}
– A \ B = { 1, 4, 6}
– (A \ B)  (A  B) =
– (A \ B) (A  B) =

A
A \ B

Version 47
39

Set operations

• Properties of the set operations:
– idempotency: A A = A; A  A = A

• for unary operator it means: f(f(A))=f(A)

– commutativity: A  B = B  A; A  B = B  A
– associativity: (A  B)  C = A  (B  C);

(A  B)  C = A  (B  C)

– distributivity: A  (B  C) = (A  B)  (A  C)
A  (B  C) = (A  B)  (A  C)

– absorption: A  (A  B) = A; A (A  B) = A

Version 47
40

Set operations

• Properties of the set operations:
– De' Morgan's Laws:

(A B) = Aഥ  Bഥ
(A B) = Aഥ  Bഥ

• The proof will use it which says that NFA is closed under
intersection

• Augustus De Morgan (1806 –1871)
– British mathematician and logician

Version 47
41

Set operations

• Definition of power set: collection of all subsets of a set
– P(A), 2A

– |P(A)| = 2|A|

– e.g.:
• P(Ø) = {Ø}
• P({a}) = {Ø, {a}}
• P({b, c}) = {Ø, {b}, {c}, {b, c}}
• P({d, e, f}) = {Ø, {d}, {e}, {f}, {d, e}, {d, f}, {e, f}, {d, e, f}}
• P({g, h, i, j}) = {Ø, {g}, {h}, {i}, {j},

{g, h}, {g, i}, {g, j}, {h, i}, {h, j}, {i, j},
{g, h, i}, {g, h, j}, {g, i, j}, {h, i, j}, {g, h, i, j}}

Version 47
42

Set operations

• Definition of partition: Π is a partition of A if
– Π  P(A)
– Ø  Π
– the members of Π are disjoint
– Π = A

2
1

3 54

76

9

8

10
11

13
12

1415

1617
18

19
20

Version 47
43

Set operations

• Example for power sets:
– P({a, b, c}) = { Ø, {c}, {b}, {a}, {a, b}, {a, c}, {b, c}, {a, b, c} }

a b c P({a, b, c})
0 0 0 Ø
0 0 1 {c}
0 1 0 {b}
0 1 1 {b, c}
1 0 0 {a}
1 0 1 {a, c}
1 1 0 {a, b}
1 1 1 {a, b, c}

Version 47
44

Set operations
• Examples for power sets

– P(Ø) = {Ø}
– P({Ø}) = { Ø, {Ø} }
– P({Ø, {Ø}}) = { Ø, {Ø}, {{Ø}}, {Ø, {Ø}} }

• True or false
– Ø  P(Ø)
– Ø  P(Ø)
– {a, b}  P({a, b})
– {a, b}  P({a, b})

Version 47
45

Set operations

• Examples for operation with sets:

– ({1, 3, 5}  {3, 1})  {3, 5, 7} =
= {1, 3, 5}  {3, 5, 7} =
= {3, 5}

– ({1, 2, 5} \ {5, 7, 9})  ({5, 7, 9} \ {1, 2, 5})=
= {1, 2}  {7, 9} =
= {1, 2, 7, 9}

Version 47
46

Set operations

• Examples for operation with sets:

– {3, 5} {3, {3, 5}, {7}}  ({{1, 2, 3}, {2, 3, 4}}) =
= {3, 5, {3, 5}, {7}}  {2, 3} =
= {2, 3, 5, {3, 5}, {7}}

– P({2, 3, 5}) \ P({3, 5}) =
= {{2}, {2, 3}, {2, 5}, {2, 3, 5}}

Version 47
47

Relations and functions

• Definition of ordered n-tuple: (a1, …, an) an object made
of other objects, a1, … an, where the order of the
components is important

• Ordered 2-, 3-, 4-, 5-, 6-tuples are called
– pairs, triples, quadruples, quintuples and sextuples
– context free languages are quadruples

• n-tuples can be defined with sets
– e.g.: (a, b) = {{a}, {a, b}}

• Properties:
– the order matters: (a, b) ≠ (b, a)
– (a, b) = (c, d) ↔ a = c, b = d

Version 47
48

Relations and functions

• Definition of Cartesian product:
– A×B = {(a, b) : a A, b B}
– e.g.: {1, 3} × {b, c}={(1, b), (1, c), (3, b), (3, c)}

• n-fold Cartesian product A1×…×An: {(a1, ..., an) : ai Ai}
– if A1 = A2 = An → A1×…×An = An

– e.g.: N×N = N2

• René Descartes (1596 –1650)
– French mathematician
– latinized form: Renatus Cartesius

Version 47
49

Relations and functions

• Examples for Cartesian product:
– {1, 3, 9} × {b, c, d} =

= {(1, b), (1, c), (1, d), (3, b), (3, c),
(3, d), (9, b), (9, c), (9, d)}

– {1} × {1, 2} × {1, 2, 3} =
= {(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 2, 3)}

– P({1, 2}) × {1, 2} =
= {Ø, {1}, {2}, {1, 2}} × {1, 2} =
= {(Ø, 1), (Ø, 2), ({1}, 1), ({1}, 2), ({2}, 1),

({2}, 2), ({1, 2}, 1), ({1, 2}, 2)}

Version 47
50

Relations and functions

• True or false:
– (a, b)  {(a, b)} × {a, b}
– {a, b}  {b, a} × {b}
– {a, b}  {a} × {b}
– (a, b)  {a} × {b}
– {(a, b)}  {a} × {b}
– {a, b}  {a} × {b}

= {((a, b), a), ((a, b), b)}

= {(a, b)}
= {(b, b), (a, b)}

= {(a, b)}
= {(a, b)}
= {(a, b)}

Version 47
51

Relations and functions

• Definition of binary relation R on sets A and B:
– a subset of A×B
– e.g.: less than relation

• A=B=N, R = {(i, j) N2 : i<j} = {(0, 1), (0, 2), (0, 3), (0,
4), ..., (1, 2), (1, 3), (1, 4), ... }

• (a, b) R ↔ a < b

A
B
C
D

1
2
3
4

Version 47
52

Relations and functions

• N-ary relation is a subset of A1×…×An

– R = {(a, A, 1), (a, A, 2), (b, B, 4), (b, C, 3), ...}

a b c d

A B C D

1 2 3 4

Version 47
53

Relations and functions

• Definition of inverse of binary relation R-1 :
– R-1 = {(b, a) :(a, b)  R}
– R A×B binary relation
– e.g.: R-1 = {(1, A), (2, A), (2, B), (3, C), (4, C)}

A
B
C
D

1
2
3
4

Version 47
54

Relations and functions

• Definition of function, f: A → B: f A×B (f is a relation)
where for  a  A,  exactly one pair in f with first
component 'a'
– (a, b)  f ↔ f(a) = b
– an association of each element of set A with an

element of set B
• A: domain of f
• f(a) is the image of 'a' under f
• range: the image of the domain

A
B
C
D

1
2
3
4

A B
f

Version 47
55

Relations and functions

• R = {(x, y) : x  C, y  S, x is a city in state y}
– is a function, C → S

• R = {(Pest, HU), (Szeged, HU), (Austin, USA), ...}
• R(Pest) = HU, R1(Szeged) = HU, ...

Relations and functions

• R-1 = {(y, x) : x  C, y  S, x is a city in state y}
– is not a function, S → C

• R-1 = {(HU, Pest), (HU, Szeged), (USA, Austin), ...}
– but F: S → P(C) is a function

• F(HU) = {Pest, Szeged, ...}, ...

Version 47
56

Version 47
57

Relations and functions

• Function with multiple arguments: f(a1 , …, an) = b
– a1 , … , an are the arguments of f
– b is the value of f
– we can write f((a1 , … , an)) = b

• or define functions with multiple arguments
• The transition of a DFA is defined by a function

(state, letter) → new state

Version 47
58

Relations and functions

• Properties of f: A → B:
– one-to-one or injective: if a ≠ a' → f(a) ≠ f(a')

• every element of B is mapped to at most one
element of A

• e.g.: S = {states}, C = {cities}
f: S → C; f(s) = capital of state s

A
B
C

1
2
3
4

A B
f

A
B
C

1
2
3

A Bf

Version 47
59

Relations and functions

– onto or surjective function:
• every element of B is mapped to at least one

element of A
• e.g.: C = {cities}, S = {states}

f: C → S; f(c) = state of city c

A
B
C
D

1
2
3

A B
f

A
B

1
2
3

A Bf

Version 47
60

Relations and functions

– one-to-one correspondence or bijective function:
• every element of B is mapped to exactly one

element of A
– one-to-one and onto function also

• e.g.: S = {states}, C = {capital cities}
f: S → C; f(s) = capital of state s

A
B
C
D

1
2
3
4

A Bf

A
B
C

1
2
3

A Bf

Version 47
61

Relations and functions

• Questions: injective, surjective, or bijective

– g: {vehicle type} → {car brand}

– h: {people} → {fingerprints of people}

– i: {ID card} → {people}

– j: {wives} → {husbands}

injective

bijective

surjective, injective

bijective in ideal case

Version 47
62

Special types of binary relations

• A binary relation R  A×A can be represented in a
directed graph
– each elements of A are represented by a node
– an arc is drawn from a to b if (a, b)  R
– e.g.: R={(a, b), (a, d), (b, a), (c, a), (d, c)}

Version 47
63

Special types of binary relations

• Properties of binary relations R  A×A:
– reflexive: (a, a)  R for all a  A
– e.g.: {(a, b) : a ≤ b}

Version 47
64

Special types of binary relations

• Properties of binary relations R  A×A:
– symmetric: if (a, b)  R → (b, a)  R

• there are arcs in both directions between the nodes
• a single undirected arc can be used
• e.g.: {(a, b) : a is a friend of b}

Version 47
65

Special types of binary relations

• Properties of binary relations R  A×A:
– anti-symmetric: if (a, b)  R, a ≠ b → (b, a)  R

• e.g.: P = set of all persons, {(a, b) : a, b  P, 'a' is
the father of b}

Version 47
66

Special types of binary relations

• Properties of binary relations R  A×A:
– transitive: if (a, b), (b, c)  R → (a, c)  R

• e.g.: {(a, b) : a, b  P, a is an ancestor of b}

a d

b c

Special types of binary relations

• Which properties are true?

Version 47
67

– reflexive
– anti-symmetric

Special types of binary relations

• Which properties are true?

Version 47
68

– reflexive
– symmetric
– transitive

a d

b c

– anti-symmetric
– transitive

Version 47
69

Special types of binary relations

• Properties of binary relations R  A×A:
– equivalence relation: R is reflexive, symmetric, and

transitive

Version 47
70

Special types of binary relations

• R consists clusters
– the clusters are not connected
– within a cluster every node is connected

• the clusters are called equivalence classes
• e.g.: {(a, b) : a = b}, each class is a singleton
• this will be used at algorithm complexity

Version 47
71

Special types of binary relations

• Properties of binary relations R  A×A:
– partial order: R is reflexive, anti-symmetric, transitive

• e.g.: {(a, b): a, b are persons, a is an ancestor of b}
– total order: R is partial order and either (a, b)  R or

(b, a)  R
• Theorem: If R is an equivalence relation on a set A →

the equivalence classes of R constitute a partition of A

Summary

• Introduction, Scope, Content
• Basic: Boolean algebra and notation
• Sets, Power sets, Descartes product
• Relations and functions
• Special type of binary relations

Version 47
72

Next time
• Finite and infinite sets
• Three fundamental proof techniques
• Closures and algorithms

Version 47
73

Elements of the Theory of Computation

Lesson 2
1.4. Finite and infinite sets

1.5. Three fundamental proof techniques
1.6. Closures and algorithms

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com

Last time

• Boolean algebra
• Sets
• Sets operations
• Relations and Functions
• Special types of binary relations

Version 47
74

Introductions 2

• Finite and infinite sets
• Three fundamental proof techniques

– Mathematical induction
– The Pigeonhole principle
– Diagonalization principle

• Algorithm complexity
• Reflexive, transitive closure

Version 47
75

Version 47
76

Finite and infinite sets

• The cardinality of set: the number of elements in it
– this definition is problematic with infinite sets

• Definition of equinumerous: set A and B is called
equinumerous if there is a bijection f: A → B
– e.g.: A = {8, red, {Ø, b}}, B = {1, 2, 3}

f(8) = 1; f(red) = 2; f({Ø, b}) = 3

A
B
C

a
b
c

Version 47
77

Finite and infinite sets

• Definition of finite set: the set is equinumerous with
{1, 2, … , n} , n  N
– A is a finite set, if  bijection f: A → {1, 2, …, n}

• Definition of infinite set: a set that is not finite
– e.g.: N, R

Version 47
78

Finite and infinite sets

• Definition of countably infinite set: equinumerous with N
– the set can be listed using ... only once
– e.g.: Z

• there is as much integer as much positive integer
• Definition of countable: finite or countably infinite
• Definition of uncountable: a set that is not countable

– e.g.: R

Version 47
79

Finite and infinite sets

• Theorem: the union of finite number of set, each set is
countably infinite, is also countably infinite

• Proof:
– a bijection must be given
– a clever listing of the elements of the sets is needed
– e.g. for set A, B, and C

Version 47
80

Finite and infinite sets

• Theorem: the Cartesian product of finite number of set,
each set is countably infinite is also countably infinite
– it is the union of countably infinite number of set, each

set is countably infinite
• Proof:

– a bijection must be given
– a clever listing of the elements

of the sets is needed

Version 47
81

Finite and infinite sets

• Questions:
– {number of divisor of a}

a  N

– {words}

– {points in the coordinate system}

countable - finite

countable - infinite

uncountable - infinite

Version 47
82

Three fundamental proof techniques

• Mathematical induction

• The Pigeonhole principle

• Diagonalization principle

Version 47
83

Mathematical induction

• Idea:
– if for set A the following are true:

• A  N
• 0  A
•  n  N, if n  A → n+1  A

– then A = N
• Intuitive proof: if the conditions are true for A: A can be

increased one element at a time
– {0}, {0,1}, {0,1, 2}, ...
– the series converges to N

• NFA to DFA conversion
uses it

Version 47
84

Mathematical induction

• We would like to show that property P is true for  n  N
– basis step: we show that for 0 P is true
– induction hypothesis:

• for some n P is true
– induction step:

• we prove that P is true for n+1 if P is true for n

Version 47
85

Example

• Theorem:
• Proof:

– basis step: n = 0
• the sum on the left is zero, there is nothing to add
• the expression on the right is also zero

– induction hypothesis:

2
0,1 2

2
n nn n 

    

2
0,1 2

2
n nn n 

    

Version 47
86

Example

• Proof:
– induction step:

Version 47
87

The pigeonhole principle

• Theorem: the Pigeonhole principle: if A and B are finite
sets and |A| > |B| → there is no one-to-one function
f: A → B
– there will be a pigeon without pigeonhole

• Proof by induction for |B|:
– basis step: n = 0 → B = Ø, f (with any property) does

not exist
– induction hypothesis: for |B| = n there is no

one-to-one f
• f: A → B, |A| > |B|, |B| = n, n 0

Version 47
88

The pigeonhole principle

– induction step: |B| = n+1, proof by indirection
• suppose  one-to-one f: A → B, |A| > |B|
• choose some a  A
• if  a'  A, f(a) = f(a') → f is not one-to-one →

contradiction
• else construct g: A-{a} → B-{f(a)} such that f=g

except at 'a'
• the induction hypothesis is true for g, so g does not

exist, consequently, neither does f → contradiction

Version 47
89

The pigeonhole principle

Original
problem

Version 47
90

The pigeonhole principle

• Theorem:
– R is a binary relation on finite set A, a, b  A
– if there is a path from 'a' to b in R →  such a path

whose length is at most |A|

a x c

y z

d e b

A

Version 47
91

The pigeonhole principle

• Proof by indirection:
– suppose the shortest path from 'a' to b is

(a=a1, a2, ..., an=b) and n>|A|
– function f: {1, 2, ... n} → A, f is no one-to-one

according to the pigeonhole principle
• e.g.: f = {(1, a1), (2, a2), ...}

– if f is no one-to-one →  ai = aj (i<j)
– (a1, a2, ..., ai, aj+1, ... an) is a shorter path than the

original (omit the nodes between ai, aj), contradiction
is reached

The pigeonhole principle

• If there is a path between 'a' to b → in the worst case
you travel through each node once
– if you travel through a node (a2) twice then you can

shorten the path by cutting the loop

Version 47
92a2 a3

a4a1

Version 47
93

Diagonalization principle

• Theorem, Diagonalization principle:
– if

• R is binary relation on set A
• D is diagonal set for R

– D = {a : a  A, (a, a)  R}
• for each a  A, Ra = {b : b A, (a, b)  R}

– then D is distinct from each Ra

• Proof: Rc differs from D in terms of c
– if (c, c) R → c  D, c Rc

– if (c, c) R → c  D, c Rc

– c is selected arbitrary

Version 47
94

Diagonalization principle

• Halting problem uses the diagonalization principle
• Visualization:

– if A is finite, R is pictured as an array
– rows and columns are labeled with the elements of A
– if (x, y)  R → square (x, y) is checked in the array
– D: complementary of the diagonal of the array:
– Ra: corresponds to the row 'a' of the array

Version 47
95

Diagonalization principle

• Diagonalization principle in other words: the complement
of the diagonal is different from each row

• The Diagonalization principle also holds for infinite sets
• D, Ra are sets but an ordering can be introduced based

on the next figure

Version 47
96

Diagonalization principle

a b c d e f
a x x

b x x

c x

d x x x x

e x x

f x x x x

x x x

x x x

R relation (a, a)  R

(a, a)  R

Diagonalization principle

• Questions: • R = {(a, b), (a, d), (b, b),
(b, c), (c, c), (d, b), (d, c),
(d, e), (d, f), (e, e), (e, f),
(f, a), (f, c), (f, d), (f, e)}

• Ra =
• Rb =
• Rc =
• Rd =
• Re =
• Rf =

Version 47
97

a b c d e f
a x x

b x x

c x

d x x x x

e x x

f x x x x

{b, d}
{b, c}
{c}
{b, c, e, f}
{e, f}
{a, c, d, e}

Version 47
98

Diagonalization principle

• Theorem: P(N) is uncountable
• Proof by indirection:

– suppose P(N) is countably infinite
• there is a way to enumerate all the subsets of N

P(N) = {R1, R2, ...}
• e.g.: R1 = {1}, R2 = {1, 2}, R3 = {2, 3}, R4 = {1, 2, 3},

R5 = {3, 4}, R6 = {2, 3, 4}, ...
– build relation R

• R1 should be the 1st row, R2 the 2nd , and so on

Version 47
99

1 2 3 4 5
R1 x

R2 x x

R3 x x

R4 x x x

R5 x x

R6 x x x

R relation

Diagonalization principle

Version 47
100

Diagonalization principle

– let D = {n : (n, n)  R}
• e.g.: D = {1, 6,}

– D is a set of natural numbers
• according to its definition

– D is not a set of natural numbers
• according to the diagonalization principle there is

no i  N such that D = Ri

• Ri’s are all the possible subsets of N

Version 47
101

• Definition of the complexity of an algorithm: f(n) is an
upper bound on the number of elementary steps
required for the algorithm if the size of the input is n
– average number cannot be used because it requires

a known distribution for the inputs

Algorithm complexity

Version 47
102

• Definition of order of f, O(f):
– let f: N → N
– O(f) is a set of such functions which increase at most

as fast as f disregarding some constants (informal)
– for  g  O(f), g: N → N

•  c ≥ 0, d ≥ 0 constants such that for  n  N,
g(n) ≤ c·f(n)+d

• e.g.: O(n3) = {n, n+1, n+2, ..., 2n, 2n+1, ..., n2, ...,
n3, ...}

Algorithm complexity

Version 47
103

• Definition of relation f  g: f, g: N → N, f  O(g), g  O(f)
–  is an equivalence relation of the N → N functions

• reflexive: f  O(f), with constants 1 and 0
• symmetric: the roles of f and g are interchangeable
• transitive

• The N → N functions are partitioned by  into
equivalence classes

• Definition of rate of growth of f: the equivalence class of f
with respect to the  relation

Algorithm complexity

Version 47
104

• f(n) = 31n2 + 17n + 3
– is it true that f(n)  O(n2)? (i.e., f(n) ≤ cn2+d)

• notice n2 ≥ n; f(n) ≤ 31n2 + 17n2 + 3 = 48n2 + 3
• c=48, d=3

– is it true that n2  O(f) ?
• yes, with c=1, d=0

– hence n2  31n2 + 17n + 3, so the two functions have
the same rate of growth

Example

Version 47
105

• Let f(n) = 10n2 + 5n+7
– is it true: f(n)  O(n2)
– f(n) = 10n2 + 5n+7 < 10n2 + 5n2+7 = 15n2 + 7
– f(n)  c * n2 + d

• c = 15, d = 7

Example

Version 47
106

• f(n) = adnd + ad-1nd-1+…+a1n+a0 , ai ≥ 0 for  i, ad>0
– f(n)  O(nd)
– all polynomials of the same degree have the same

rate of growth

Example

Version 47
107

• Lemma: for  n  N, n ≤ 2n

• Proof:
– basis step: 0 ≤ 20 = 1
– induction hypothesis: suppose that n ≤ 2n

– induction step: n+1 ≤ 2n+1 ≤ 2n +2n = 2n+1

• add 1 to both sides
• replace 1 with 2n on the right side, 1 ≤ 2n

Algorithm complexity

Algorithm complexity

• Theorem: for  i  N, ni  O(2n)
• Proof:

– ni ≤ c2n + d
• c=(2i)i, d=(i2)i

– if n ≤ i2

• ni ≤ (i2)i, use the power function
– (i2)i =d, see definition of d

• ni ≤ d
• ni ≤ c2n + d, the added term is positive

– for small n the d in c2n + d makes sure that ni is
smaller

Version 47
108

Version 47
109

– if n ≥ i2

• let m = n / i → m*i ≤ n < (m+1)*i
• n < i·(m+1)
• ni ≤ ii·(m+1)i ≤ ii·(2m+1)i (because of the lemma)
• ni ≤ ii·(2m+1)i = ii·(2·2m)i = (2·i·2m)i = (2i)i·2mi = c·2mi ≤

c2n ≤ c2n + d
– for large n the c makes sure that ni is smaller
– the rate of growth of any polynomial is no faster than

2n

Algorithm complexity

Version 47
110

Algorithm complexity

• Theorem: for  i  N, 2n  O(ni)
– 2n does grow faster than ni

• Proof by indirection:
– suppose 2n  O(ni) for  i  N
– ni  O(2n), see the previous theorem
– 2n  O(ni), ni  O(2n) → ni  2n

– select i1 ≠ i2
– ni1  2n, ni2  2n → ni1  ni2

• transitive property of 
– ni1  ni2 is not true, contradiction

Version 47
111

Reflexive, transitive closure

• Definition of "reflexive, transitive closure of R" = R*:
– let R  A2 be represented by a directed graph

defined on a set A
– R* is the smallest relation that contains R and is

reflexive and transitive

Version 47
112

• Algorithm 1 for determining R*:
R* := 0

for i=1, …, n do

for each i-tuple (b1, …, bi)  Ai do
if (b1, …, bi) is a path in R →

add (b1, bi) to R*

• Informal definition of algorithm:
– sequence of instructions that produces a result
– halt after a finite number of steps

Reflexive, transitive closure

Version 47
113

• The operation of the algorithm:
– initially R* is empty
– all paths of R (with all the possible length) are

considered
– for each path a direct connection is added to R*

Reflexive, transitive closure

Version 47
114

• Complexity of the algorithm 1:
– the input size is IAI = n
– number of i-tuples if IAI = n: ni

• e.g.: IAI = 10, number of 5-tuples: 105

– number of steps to check if an i-tuple is a path: n
– f(n) = n*(1+n+n2+…+nn)
– f  O(nn+1)

• nn+1 has even higher rate of growth than 2n

• this algorithm is not efficient

Reflexive, transitive closure

Version 47
115

• Algorithm 2 for determining R*:
R* := R  {(ai, ai) : ai  A}

for all (ai, aj, ak)  A3

if (ai, aj),(aj, ak)  R*, (ai, ak)  R* →
add (ai, ak) to R*, restart

• R* will certainly contain R, and it will be reflexive

Reflexive, transitive closure

Version 47
116

• Complexity of the algorithm 2:
– the add statement is executed at most n2 times
– after each addition the search for a suitable triplet

must be restarted, there are n3 triplets
– f(n) = n5

Reflexive, transitive closure

Version 47
117

Example

• Visiting order of the triplets: (a1, a1, a1), (a1, a1, a2), ...,
(a1, a1, a4), (a1, a2, a1), (a1, a2, a2), ..., (a4, a4, a4)

• First violation at (a1, a4, a3)
– new edge: (a1, a3)

• If the search is not restarted → the next violation at
(a1, a3, a2) is missed

Version 47
118

• Algorithm 3 for determining R*:
R* := R  {(ai, ai) : ai A}
for j=1, 2, …, n do

for i=1, 2, …, n, k=1, 2, …, n do

if (ai, aj), (aj, ak)  R* →
add (ai, ak) to R*

Reflexive, transitive closure

Version 47
119

• Algorithm 3 for determining R*:
– this is a modification of algorithm 2
– it searches the triplets in such an order that the newly

added arcs do not introduce such violation which
cannot be rectified later

• restart is not needed
– f(n) = n3

Reflexive, transitive closure

Version 47
120

Example

• Visiting order of the triplets: (a1, a1, a1),..., (a1, a1, a4),
(a2, a1, a1), ..., (a2, a1, a4),..., (a1, a2, a1), ..., (a4, a4, a4)

• First violation: (a4, a3, a2)
– new arc: (a4, a2)

• The new violation, (a1, a4, a2), will be dealt with later
• Last violation: (a1, a4, a3)

Version 47
121

• Definition of the rank of a path (ai0, ai1, ..., aik): the largest
integer among i1, ..., ik-1 (the indexes of the inner nodes)
– trivial path: a single arc, rank = 0, no inner node

• Theorem: the jth iteration adds those pairs to R* that are
connected in R by paths of rank j
– in other words: after the jth iteration, R* contains all

pairs (ai, ak) which are joined by a path of rank j or
less in R (we prove this)

– if j = n → the statement is: after the nth iteration (at the
end) R* contains all pairs which are joined by a path
of rank n or less (any path) in R

• it is the definition of R*

Reflexive, transitive closure

Version 47
122

Reflexive, transitive closure

• Proof by induction on j:
– basis step: j=0

• trivial paths of R are the arcs of R
• the arcs of R is already in R*

– induction step:
• select any nodes ai, ak which are connected by a

path of rank j+1
– they are also connected by such a path in

which aj+1 appears exactly once
– if aj+1 appears more than once → delete the

portion of the path between the first and last
occurrences

Version 47
123

Reflexive, transitive closure

• paths (ai, ..., aj+1) and (aj+1, ..., ak) have rank j or
less

– the algorithm regard triplets and not paths
• (ai, aj+1), (aj+1, ak)  R* according to the induction

hypothesis
– these arcs are added in a previous iteration

• we add (ai, ak) to R* according to the algorithm, so
now R* contains all pairs (ai, ak) which are joined
by a path of rank j+1 or less

Version 47
124

Version 47
125

Set closed under a relation

• Definition of set A is closed under relation R:
– let

• D set
• n ≥ 0
• A  D
• R  Dn+1 an (n+1)-ary relation

– R is called the closure property of set A, R does
not go out from A

– if  (b1,…, bn+1)  R, b1,…, bn  A, → bn+1 A
• If R is a function then R(b1,…, bn) = bn+1

• The result is in the same set as the parameters

Version 47
126

Example

• Natural numbers are closed under addition
– D=Z, A=N, n=3, R={..., (0, -1, -1), (0, 0, 0), (0, 1, 1),

... , (3, 4, 7), ...}
– the sum of two natural number is also a natural

number
• Natural numbers are not closed under subtraction

– D=Z, A=N, n=3, R={..., (0, -1, 1), (0, 0, 0), (0, 1, -1),
... , (3, 4, -1), ...}

– the difference of two natural numbers is not always a
natural number

Version 47
127

Closures

• Theorem: Let A  D, R  Dn+1 an (n+1)-ary relation,
there is a unique minimal (in terms of cardinality) set A*
such that A  A*, and A* is closed under R
– A* is called the closure of A under R
– "set A is closed under R" is a property of set A
– "R closure of set A" is a set operation of A

• A can be any set, e.g., a relation

Version 47
128

Closures

• There are several possible closures, and there are
polynomial algorithms for computing all of these closures
– conversely any polynomial algorithm can be

interpreted as the computation of the closure of a set
under some relation

Version 47
129

Closures

• R is a relation, R  Dr+1, A  D
• Computation of A* under R
A* := A

while  elements aj1, ..., ajr  A*,
ajr+1  A*, and (aj1, ..., ajr, ajr+1) R

add ajr+1 to A*

Version 47
130

Closures

• Transitivity:
– let A  D × D

• A can be seen as a relation and as a set (of arcs)
– R = {((a, b), (b, c), (a, c)) : a, b, c  D}

• all possible transitive triplets
• R  (D × D)3, ternary relation

– A is closed under R ↔ A is transitive
– A* is completed by adding the 3d component of R

which is calculated from the first and second ones

Version 47
131

Closures

• Reflexivity:
– let A  D × D

• A can be seen as a relation and as a set (of arcs)
– R = {((a, a)) : a  D}

• all possible loop
• R  (D × D), unary relation: relates nothing with

(a, a)
– A is closed under R ↔ A is reflexive
– A* is completed by adding the first component of R

which is calculated from nothing

Version 47
132

• A binary relation is given on D × D, give the closure of
set A on this relation!
– D = {d1, d2, d3, d4}
– A = {d4}
– (d4, d3)  R, d4  A* → d3  A*
– (d3, d2)  R, d3  A* → d2  A*
– A* = {d2, d3, d4}

Examples

d3

d1 d2

d4

Summary

• Finite and infinite sets
• Mathematical induction
• The Pigeonhole principle
• Diagonalization principle
• Algorithm complexity
• Reflexive, transitive closure

Version 47
133

Next time
• Alphabets and languages
• Finite representations of languages

Version 47
134

Elements of the Theory of Computation

Lesson 3
1.7. Alphabets and languages

1.8. Finite representations of languages

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com

Last time

• Finite and infinite sets
• Mathematical induction
• The Pigeonhole principle
• Diagonalization principle
• Algorithm complexity
• Reflexive, transitive closure

Version 47
135

Alphabets and languages

• Alphabets, strings, and languages
• Finite representation of language
• Regular expressions
• Properties of RE
• Regular languages

Version 47
136

Version 47
137

Alphabets, strings, and languages

• Definition of alphabet, Σ: finite set of symbols
• E.g.:

– the Roman alphabet: {a, b, c,…, z}
– the binary alphabet: {0, 1}
– unary alphabet: {I}

• Definition of string: finite sequence of symbols from the
alphabet

Version 47
138

Alphabets, strings, and languages

• Examples for strings:
– watermelon, water, chain are strings over the

alphabet {a, b, c, …, z}
– 0111011, 1, 100, 0 are strings over the alphabet {0, 1}

Version 47
139

• Definition of empty string, e: string containing 0 symbol
– do not confuse with symbol e
– {e} ≠ Ø

• Definition of Σ*: the set of all strings over alphabet Σ
– in other words: all such string which can be created

by using elements of Σ
– contains the e
– it is called sigma star
– w  Σ*, means any string from that alphabet

Alphabets, strings, and languages

Version 47
140

Alphabets, strings, and languages

• Definition of length of string, |w|: the number of letters in
a string

• E.g.:
– |apple| = 5
– |101| = 3
– |e| = 0
– |szpsz| = 5 in English
– |szpsz| = 3 in Hungarian

• w(j) is the jth letter in string w
– e.g.: w=fun, w(1)=f, w(2)=u, w(3)=n

Version 47
141

Alphabets, strings, and languages

• Definition of concatenation of two strings, x◦y: string
operation resulting in a new string
– also denoted by: xy
– if w = xy
– then

• |w| = |x|+|y|
• w(j) = x(j), j=1, ... |x|
• w(|x|+j) = y(j), j=1, ... |y|

Version 47
142

Alphabets, strings, and languages

• Examples for concatenation:
– beach◦boy = beachboy
– 01◦001 = 01001
– w◦e = e◦w = w,  w Σ*

• Concatenation is associative: (wx)y = w(xy)
– but not commutative

Version 47
143

• Definition of substring: v is a substring of w ↔  x, y
such that w = xvy
– w, x, v, y  Σ*
– both x and y could be e, so every string is a substring

of itself
– if w = vy, v is the prefix of w
– if w = xv, v is the suffix of w

Alphabets, strings, and languages

Version 47
144

• Definition of wi: w  Σ*, i  N
– w0 = e
– wi+1 = wi◦w, i ≥ 0
– e.g.: (re)1 = re, (do)2 = dodo

• Definition of the reversal of a string, wR:
– if |w| = 0, wR = w = e
– if |w| > 0 →  a  Σ, u  Σ* such that w = ua →

wR = auR

– e.g.:
• (car)R = rac
• (A man a plan a canal Panama)R =

= A man a plan a canal Panama

Alphabets, strings, and languages

…

Version 47
145

• Theorem: for any strings w and x, (wx)R = xRwR

– e.g.: (walnut)R = (nut)R(wal)R = tunlaw
• Proof:

– basis step: IxI = 0 → x = e, and (wx)R = (we)R = wR =
ewR = eRwR = xRwR

– induction hypothesis for n
• if IxI ≤ n → (wx)R = xRwR

Alphabets, strings, and languages

Version 47
146

Alphabets, strings, and languages

• Proof:
– induction step: IxI = n+1 → x = ua, u  Σ*, a  Σ,

IuI = n
• (wx)R = (w(ua))R since x=ua
• = ((wu)a)R since concatenation is associative
• = a(wu)R by the definition of reversal of (wu)a
• = a(uRwR) by the induction hypothesis
• = (auR)wR since concatenation is associative
• = (ua)RwR by the definition of the reversal of ua
• = xRwR since x=ua

Version 47
147

• Definition of language, L: a set of strings over Σ
• Special languages:

– Ø: a language with 0 string
– Σ: a language with |Σ| one letter strings
– Σ*: contains all possible string over Σ

Alphabets, strings, and languages

Version 47
148

• Defining languages:
– listing all its items, e.g.: L = {aba, czr, d, f} is a

language over {a, b, c, ….., z}
– specify a property which is true for all strings in the

language
• infinite languages can be defined in this way
• e.g.: L = {w  Σ* : w starts with ab}

Alphabets, strings, and languages

Version 47
149

• Definition of union of languages:
– L1  L2 = {w : w  L1 or w  L2}

• someone uses | instead of 
• Definition of concatenation of languages:

– then L1◦L2 = {w  Σ* : w = x◦y, x  L1, y  L2}
• L1L2 also means the concatenation

• An important property: finite automata are closed under
union

Alphabets, strings, and languages

Version 47
150

Alphabets, strings, and languages

• L1L2 is similar to the Descartes product
– |L1L2|≤|L1|*|L2|

• E.g.:
– Σ = {a, b}, L1 = {a, aa}, L2 = {bb, a}
– L1L2 = {abb, aa, aabb, aaa}

• E.g.:
– Σ= {a, b}, L1 = {ab, a}, L2 = {a, ba}
– L1L2 = {aba, abba, aa}

Version 47
151

• Definition of Kleene star of a language, L*:
– L* = {w  Σ* : w = w1◦.....◦wk, k ≥ 0,w1, ……, wk  L}

• set of all strings obtained by concatenating zero or
more strings from L

– the concatenation of zero strings is e and the
concatenation of one string is the string itself

– L+ = LL*, L? = L  {e}
• Stephen Cole Kleene (1909 –1994)

– American mathematician
– helped to lay the foundations for theoretical computer

science

Alphabets, strings, and languages

Version 47
152

• Examples and questions:
– if L = {01,1,100} → 110001110011  L*, since

110001110011 = 1◦100◦01◦1◦100◦1◦1
– if L = {ab, ba, acb} → abacbab  L*
– if L = Ø → L* = {e}

• the only possible concatenation w1◦.....◦ wk with k = 0

– 100011100
– 1011001
– acbbaab
– baacbab

Examples

= 100◦01◦1◦100
= 1◦01◦100◦1
= acb◦ba◦ab
= ba◦acb◦ab

Version 47
153

• Lemma: if L1  L2 → L1*  L2* from the definition of
Kleene star

• Theorem: if L = {w  {0, 1}* : w has an unequal number
of 0 and 1} → L* = {0, 1}*

• Proof:
– {0, 1}  L, since both 0 and 1 has an unequal number

of 0 and 1 → {0, 1}*  L* by the lemma
– L*  {0, 1}*

• B  Σ* = {0, 1}* is true for each language B
– L* = {0, 1}*, the subset is true for both directions

Alphabets, strings, and languages

Version 47
154

Finite representation of language

Version 47
155

Finite representation of language

• Theorem: only a small portion of the languages can be
represented finitely

• Proof:
– Σ is an alphabet with all possible letter
– Σ*, the set of all possible words, is countably infinite
– P(Σ*), the number of all possible language, is

uncountable
– a language representation is a word

• does not matter if the elements are listed or a
common property is given

– there are only countably infinite language
representation but there are uncountable languages

Version 47
156

• Motivating example:
– L = {w  {0, 1}* : w has two or three occurrences of 1

and the first and second are not consecutive}
– this language can be described with only singleton

sets and language operations

Regular expressions

Version 47
157

– L = {0}*◦{1}◦{0}*◦{0}◦{1}◦{0}*◦(({1}◦{0}*){0}*)
• {0} = language containing string 0
• {0}* = Kleene star of the previous language
• {0}*◦{1} = concatenation of the previous language

and language {1}
– it is more simple to omit the braces and write

L=0*10*010*(10*0*)
• we need an exact definition what this expression

does mean

Regular expressions

Version 47
158

Regular expressions

• Definition of regular expression, RE over alphabet Σ:
strings over Σ  {, , Ø, , } that can be obtained as
– Ø and any element of Σ is a regular expression
– (αβ) is a regular expression

• α and β are regular expressions
– (α  β) is a regular expression
– α is a regular expression
– nothing is regular expression unless it follows the

previous four points

Version 47
159

Regular expressions

• It is a recursive definition
• E.g.: Σ = {x, y} → Ø, x, y, (xy), (xy), ((xy)  z) RE
• For simplicity (,) can be omitted

– e.g.: ((xy)z) = xyz, (x  y) = x  y
– beware: (xy) ≠ xy

Version 47
160

Regular expressions

• Regular expressions:
– are language generators

• describe how a generic specimen in the language
is produced

• language generators are not algorithms
– represent a new way to define a language
– , , Ø, ,  are new symbols without meaning at the

moment
• these symbols appear only in regular expression
• we will see that these symbol correspond to , *,

Ø, ,  so only these regular symbols will be used

Version 47
161

Regular expressions

• Definition of function L: RE → languages:
– α and β are regular expressions
– L(Ø) = Ø, L(a) = {a},  a  Σ
– L((αβ)) = L(α)L(β)
– L((α  β)) = L(α)  L(β)
– L(α) = L(α)*

• Now the meaning of the new symbols are defined
– from now on we use  instead of , ...

Regular expressions

• L(Ø*) = L(Ø)* = Ø* = {e}
• Nota bene: 'a' can be

– symbol
– string
– language
– RE

Version 47
162

Version 47
163

Properties of RE

• Commutative: r  s = s  r
• Associative:

– (r  s)  t = s  (r  t)
– (rs)t= r(st)

• Distributive:
– r(s  t) = rs  rt
– (s  t)r = sr  tr

Version 47
164

Properties of RE

• Ø identity element:
– Ør = r
– rØ = r

• Idempotent: r** = r*
• Precedence in increasing order: , ◦, *
• All these operators are left associative

– if the same operator is at both sides of an operand →
the left one must be performed first

• E.g.: (a)  ((b)*(c)) is equivalent with a  b*c

Version 47
165

Example

• E.g.: L(((a  b)a)) = ?
= L(((a  b)a)) = L((a  b))L(a)
= L((a  b)){a}
= L((a  b))*{a}
= (L(a)  L(b))*{a}
= ({a} {b})*{a}
= {a, b}*{a}
= {w  {a, b}* : w ends with 'a'}

Version 47
166

Example

• L(a  ab)L(cd  dc) = ?
= L(a  ab)L(cd  dc) =
= (L(a)  L(ab))(L(cd)  L(dc)) =
= ({a}  {ab})({cd}  {dc}) =
= {a, ab}{cd, dc} =
= {acd, adc, abcd, abdc}

Version 47
167

Example

• L(a  Ø)L(ab  ba) = ?
= L(a  Ø)L(ab  ba) =
= (L(a)  L(Ø))(L(ab)  L(ba)) =
= ({a}  Ø)({ab}  {ba}) =
= {a}{ab, ba}={aab, aba}

Version 47
168

Example

• True or false?
– baa  L(a*b*a*b*)
– L(b*a*)  L(a*b*) = L(a*  b*)
– L(a*b*)  L(c*d*) = Ø
– abcd  L((a(cd)*b)*)

– false because the first iteration of the
outermost * can generate "ab" but after
that there is a compulsory "a"

Version 47
169

Regular languages

• Definition 1 of regular languages, : the set of
languages satisfying the following properties
– Ø  , {a}  ,  a  Σ
– if A, B   → A  B  , A◦B  , A*  
– if S is a set of languages and it satisfies the first two

points →   S ( is minimal)
•  is the closure of the basic languages respect to union,

concatenation, and Kleene star

Version 47
170

Regular languages

• Nota bene:
–  is a set of languages, a language is a set of strings
– don't confuse language with grammar

Version 47
171

Example

• Give regular expression RE such that L(RE) = {w  {a, b}*}
– RE = (a*b*)* or RE = (a  b)*

• Give regular expression RE such that L(RE) =
{w  {a, b}* | abba is a substring of w}
– RE = (a*b*)*abba(a  b)*

• Give regular expression RE such that L(RE) =
{w  {a}* | #a is odd}
– RE = a(aa)*

• Give regular expression RE such that L(RE) =
{w  {a, b}* | #a is odd}
– RE = b*ab*(b*ab*ab*)*

Example

• Give regular expression RE such that
L(RE) = {w  {a, b}* | #a is even or #a mod 3 = 0}
– RE1 = (b*ab*ab*)*  b*
– RE2 = (b*ab*ab*ab*)*  b*
– RE = RE1  RE2 = (b*ab*ab*)*  b*  (b*ab*ab*ab*)*

Version 47
172

Version 47
173

Regular languages

• Theorem: every finite language is regular
• Proof:

– let |L| = n, wi  Σ* the possible strings in L
– let RE R = w1  w2  ...  wn

– L = L(R)

Version 47
174

Regular expressions

• Definition 2 of regular languages: every language which
can be described by a regular expression

• We cannot describe some languages by regular
expressions though they have very simple descriptions
by other means
– L = {anbn : n ≥ 0} not regular

Summary

• Alphabets, strings, and languages
• Finite representation of language
• Regular expressions
• Properties of RE
• Regular languages

Version 47
175

Next time

• Deterministic finite automata

Version 47
176

Elements of the Theory of Computation

Lesson 4
2.1. Deterministic finite automata

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com

Last time

• Alphabets, strings, and languages
• Finite representation of language
• Regular expressions
• Properties of RE
• Regular languages

Version 47
177

Deterministic finite automata

• Structure of DFA
• The operation of DFA
• State diagram
• Configuration
• Yield in one step
• Computation
• Yield
• String accepted by DFA
• Language accepted by DFA

Version 47
178

Version 47
179

Deterministic finite automata

• Deterministic finite automaton, DFA: mathematical model
for a machine that can accept certain types of languages
– it is called a language recognizer

• DFA is
– deterministic because it is unambiguous what to do

next
– finite because it is defined with finite sets
– automaton because does not need user interaction

Version 47
180

Structure of DFA

Version 47
181

Deterministic finite automata

• Definition of deterministic finite automaton, M: a
quintuple (K, Σ, δ, s, F), where:
– K set of states (finite)
– Σ alphabet (finite)
– δ transition function, K×Σ → K

• δ is defined for all pair in K×Σ
– s  K, initial state
– F  K, the set of final states

• F could be called accepting states

Version 47
182

The operation of a DFA

• A DFA begins
– in state s
– reading the first symbol in the input tape

• The DFA changes state
– if

• M is in state q
• reading symbol   Σ

Version 47
183

The operation of a DFA

– then
• M passes to state δ(q, )

– the new state is determined uniquely as δ is a
function

• the reading head steps one to the right
• After reading the last symbol, DFA halts

– the input is accepted if DFA is in q  F
– otherwise the input is rejected

Version 47
184

State diagram

• State diagram is a representation of a DFA
– it is a directed graph

• nodes represent states
– the outdegree of each node |Σ|
– name the states

• arrows are labeled with elements of δ
• Sink: a node with only reflexive outgoing arcs

Version 47
185

State diagram

Version 47
186

Deterministic finite automata

• DFA is denoted as either M = (K, Σ , δ, s, F) or
M(K, Σ , δ, s, F)

• Give the state diagram of M = (K, Σ, δ, s, F)!
– K = {q0, q1}
– Σ = {a, b}
– s = q0

– F = {q1}

q  δ(q, )
q0 a q1

q0 b q0

q1 a q0

q1 b q1

Version 47
187

Configuration

• Definition of configuration of a DFA M = (K, Σ, δ, s, F): an
ordered pair of the current state of M and the unread part
of the input
– it is an element of K×Σ*
– there is no need to store the whole input because the

reading head cannot go to the left, so the already
read input cannot affect the result

– the effect of the already read input is in the current
state

– e.g.: (q5, aaabb)

Version 47
188

Example

Version 47
189

Example

• M accepts L = {w : the number of 'a' in w is odd}
– q0 - the number of 'a' is even
– q1 - the number of 'a' is odd

• Is it a valid configuration if
w = bababb
− (q0, abbba)
− (q0, bb)
− (q1, b)
− (q1, abb)
− (q2, babb)

Version 47
190

Yield in one step

• Definition of yield in one step of a DFA, |-M: a relation
between two "neighboring" configurations
– formally:

• if a  Σ, y  Σ*, q, p  K, δ(q, a) = p
• then ((q, ay), (p, y))  |- or (q, ay) |- (p, y)

– we say: (q, ay) yields (p, y) in one step
• there is an appropriate transition between the two

configurations
– |-M  (K×Σ*)2

• If it is unambiguous that the yield corresponds to which
DFA then the subscript M may be omitted

Version 47
191

Example

Example

• Is it a valid yield?
– (q0, abbba) |- (q1, abbba)
– (q0, aba) |- (q1, ba)
– (q0, abb) |- (q0, bb)
– (q0, bab) |- (q0, ab) Version 47

192

Version 47
193

Computation

• Definition of computation by DFA M: a sequence of
configuration C0, C1, ... Cn such that C0 |- C1 |- ... |- Cn

– e.g.: (q1, abaa) |- (q2, baa) |- (q1, aa) |- (q3, a)
– the length of a computation is the number of yield in

one step
– the first and the last configuration can be connected

with the yield in n steps relation, signed as |-n

• e.g.: (q1, abaa) |-3 (q3, a)
• We will use computation at NFA

Version 47
194

Example

Are they valid yields?
(q0, bababa) |- (q0, ababa) |- (q1, baba) |- (q1, aba) |- (q1, ba)

Version 47
195

Yield

• Definition of yield of a DFA, |-M*: the reflexive, transitive
closure of |-M

– if (q', w') can be reached from (q, w) through a
number of yield in one step operation then the yield
operation holds between (q, w) and (q', w')

• denote as: (q, w) |-* (q', w')
– zero step is possible: (q, w) |-M* (q, w)

Version 47
196

Example

(q0, bababa) |-* (q1, aba)
(q0, bababa) |-* (q1, ba)

(q0, bababa) |-3 (q1, aba)
(q0, bababa) |-5 (q0, ba)

Version 47
197

String accepted by DFA

• Definition of word accepted by DFA: w  Σ* is accepted
by M if (s, w) |-M* (q, e), q  F
– if an accepting configuration is reachable from the

initial configuration through yield operation
• initial configuration: (s, w) = (starting state, whole

input)
• accepting configuration: the state of the

configuration belongs to the final states, and w = e

Version 47
198

Example

• babbaa is accepted by DFA

Version 47
199

Example

• Are the following strings accepted?
– abbba
– bbbabbb
– babababab

Version 47
200

Language accepted by DFA

• Definition of language accepted by DFA M, L(M): the set
of strings accepted by M
– L(M) = {w  Σ* : (s, w) |-M* (q, e), q  F}

• The number of steps required to decide if w  L(M) or
not: |w|
– one symbol is processed in every step

Version 47
201

Example

• Give the computation of bbabaa and aabaab by
DFA M!
– L(M) = {w : in w the number of 'a' are odd}

Example

• Input: bbabaa

(q0, bbabaa) |-M (q0, babaa)
|-M (q0, abaa)
|-M (q1, baa)
|-M (q1, aa)
|-M (q0, a)
|-M (q1, e)

Accepted

Version 47
202

Example

• Input: aabaab

(q0, aabaab) |-M (q1, abaab)
|-M (q0, baab)
|-M (q0, aab)
|-M (q1, ab)
|-M (q0, b)
|-M (q0, e)

Rejected

Version 47
203

Version 47
204

Example

• L(M) = {w : w  {a, b}* and w contains the string aba}

• It is important to give the meaning of the states
– q0: 0 symbol (e) is read from aba
– q1: 1 symbol (a) is read from aba
– q2: 2 symbol (ab) is read from aba
– q3: 3 symbol (aba) is read from aba

Example

• Define DFA M such that L(M) = {w  {a, b}* | #b = 3}!
• States:

– q1: #b = 0
– q2: #b = 1
– q3: #b = 2
– q4: #b = 3 – final state
– q5: #b ≥ 4

205
Version 47

Version 47
206

• L(M) = {w  {a, b}* : in w the number of 'a' is even and
there is at most one b in w}
– q0,0: #a is even, no b yet
– q1,0: #a is odd, no b yet
– q1,1: #a is odd, 1 b occurred
– q0,1: #a is even, 1 b occurred
– q0,2: #a is even, more than 1 b occurred
– q1,2: #a is odd, more than 1 b occurred

• The two DFAs are equivalent

Version 47
207

Summary

• Structure and operation of DFA
• State diagram
• Yield in one step
• Yield
• String accepted by DFA
• Language accepted by DFA

Version 47
208

Next time
• Non-deterministic finite automata

Version 47
209

Elements of the Theory of Computation

Lesson 5
2.2. Non-deterministic finite automata

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com

Last time

• Structure of DFA
• The operation of DFA
• State diagram
• Configuration
• Yield in one step
• Computation
• Yield
• String accepted by DFA
• Language accepted by DFA

Version 47
210

Non-deterministic finite automata

• Non-deterministic behavior
• NFA
• Difference of DFA and NFA
• Yield in one step
• Yield
• String accepted by NFA
• Language accepted by NFA
• Automata equivalence
• DFA ↔ NFA

Version 47
211

Version 47
212

Non-deterministic behavior

• Definition of non-deterministic behavior: the operation
such a way that there is a number of possible next step
and there is no way to decide between them
– at finite automaton: change the actual state in such a

way that is only partially determined by the current
state and input symbol

Version 47
213

Non-deterministic behavior

• In other words:
– there are several possible next states for a given

input
• our model does not determine which state should

be chosen
– it is not a realistic model as there is no way to

implement it directly
• though it can be simulated by taking into account

every possibility

Version 47
214

Motivating example

• Consider the language L = (ab  aba)*, which is accepted
by the next DFA

Version 47
215

Motivating example

• The previous figure is quite complex
– it is hard to check if it is DFA at all
– it is hard to check if it accept L
– there is no simpler DFA that can accept L

Version 47
216

Motivating example

• The current automata is simpler
though it is not DFA
– from q0 there is no b arrow
– from q1 there is two b arrow but not

'a' arrow
– from q2 there is no b arrow

• Operation
– ab: q0 → q1 → q0

– aba: q0 → q1 → q2 → q0

• At q1 we might choose the wrong way
– let us suppose we always guess

correctly

Version 47
217

Motivating example

• The current automata also accepts L but it
is not DFA either
– there is an empty transition, e, from q2

• we might go to q0 without moving the
head

• Operation
– ab: q0 → q1 → q2 →(reading e) q0

– aba: q0 → q1 → q2 → (reading 'a') q0

q0

a
e b

a

q1

q2

Version 47
218

Motivating example

• The current automata also accepts L but it is not DFA
either
– a whole string is read in a single transition

• the labels "ab" and "a, b" on an arc has different
meanings

• Operation
– ab: q0 →(reading ab) q0

– aba: q0 →(reading aba) q0

Version 47
219

Non-deterministic finite automata
NFA

• Definition of non-deterministic finite automata, M: a
quintuple (K, Σ, Δ, s, F), where
– K set of states (finite)
– Σ alphabet (finite)
– s  K initial state
– F  K the set of final states
– Δ  K×Σ*×K the transition relation

• the 2nd edition book define Δ  K×(Σ  e)×K
• The push down automaton is similar to NFA

– it is also non-deterministic

Version 47
220

Non-deterministic finite automata, NFA

• Michael Oser Rabin (1931) • Dana Stewart Scott (1932)

Version 47
221

Differences between DFA and NFA

• Δ is a relation and not a function:
– for one state several next states may be reached

reading the same input
– Δ may not be defined for all K×Σ
– there are transition with strings instead of symbols
– there are e transitions

Version 47
222

Configuration

• Definition of configuration of a NFA M = (K, Σ, Δ, s, F):
an ordered pair of the current state of M and the unread
part of the input
– it is an element of K×Σ*
– there is no need to store the whole input because the

reading head cannot go to the left, so the already
read input cannot affect the result

– e.g.: (q8, aaba)

Version 47
223

Yields in one step

• Definition of yield in one step of an NFA, |-M: a relation
between two "neighboring" configurations
– formally:

• if x, y  Σ*, q, p  K, (q, x, p)  Δ
• then ((q, xy), (p, y))  |- or (q, xy) |- (p, y)

– we say: (q, xy) yields (p, y) in one step
• there is an appropriate transition between the two

configurations
– |-M  (K×Σ*)2

• If it is unambiguous that the yield corresponds to which
NFA then the subscript M may be omitted

Version 47
224

Computation

• Definition of computation by NFA M: a sequence of
configuration C0, C1, ... Cn such that C0 |- C1 |- ... |- Cn

– e.g.: (q1, abaa) |- (q2, aa) |- (q1, aa) |- (q3, a)
– the length of a computation is the number of yield in

one step applied
– the first and the last configuration can be connected

with the yield in n steps relation, signed as |-n

• e.g.: (q1, abaa) |-3 (q3, a)

Version 47
225

Yield

• Definition of yield of an NFA, |-M*: the reflexive, transitive
closure of |-M

– if (q', w') can be reached from (q, w) through a
number of yield in one step operation then the yield
operation holds between (q, w) and (q', w')

• denote as: (q, w) |-M* (q', w')
– zero step is possible: (q, w) |-M* (q, w)

Version 47
226

String accepted by NFA

• Definition of strings accepted by NFA: w  Σ* is
accepted by M if (s, w) |-* (q, e), q  F
– the automaton is in final state
– the whole input is read

• If NFA M cannot process the whole input because of the
missing transitions then w is rejected

Version 47
227

String accepted by NFA

• The yield in NFA can lead to different configurations
reading the same input
– there are possible branching at the computation of w
– if there is as much as one path from (s, w) to (q, e)

such that q  F then w is accepted

Version 47
228

Language accepted by NFA

• Definition of language accepted by NFA M, L(M): the set
of strings accepted by M
– L(M) = {w  Σ* : (s, w) |-M* (q, e), q  F}

Version 47
229

Example

• NFA that accept all strings containing bb or bab

Version 47
230

Example

• Formally (K, Σ, Δ, s, F), where:
– K = {q0, q1, q2, q3, q4}
– Σ = {a, b}
– Δ = {(q0, a, q0), (q0, b, q0), (q0, b, q1), (q1, b, q2),

(q1, a, q3), (q2, e, q4), (q3, b, q4), (q4, a, q4),
(q4, b, q4)}

– s = q0

– F = {q4}

Version 47
231

Example

• Input: bababab
• Case 1:

– (q0, bababab) |- (q0, ababab) |- (q0, babab) |-
(q0, abab) |- … |- (q0, e)

– this computation ended in a non-final state
• Case 2:

– (q0, bababab) |- (q1, ababab) |- (q3, babab) |-
(q4, abab) |- (q4, bab) |- (q4, ab) |- (q4, b) |- (q4, e)

• The string is accepted because there is such a
computation which leads to a final (accepting)
configuration

Version 47
232

Non-deterministic finite automata

• End of input theorem: (q, x) |-* (p, e) ↔ (q, xy) |-* (p, y)
– the end of the input, y, does not effect the operation

of M until it is read
– e.g.: (q3, alma) |-* (q7, e) ↔ (q3, almafa) |-* (q7, fa)

Version 47
233

Non-deterministic finite automata

• Proof:
– (q, x) |-* (p, e) ↔ (q, x) = (q0, x0) |- (q1, x1) |- (q2, x2) |-

… |- (qn, xn) = (p, e) by detailing the yield
• q0, q1, …, qn  K, x0, x1, …, xn  Σ*

– (qi, xi) |- (qi+1, xi+1) ↔  (qi, ui, qi+1)  Δ, ui Σ* such
that x i= uixi+1, by the definition of yield in one step

–  (qi, ui, qi+1)  Δ ↔ (qi, uixi+1y) |- (qi+1, xi+1y) by the
definition of yield in one step

– (qi, uixi+1y) |- (qi+1, xi+1y) ↔ (q, xy) |-* (p, y)
• by the transitive property of yield
• (q, xy) = (q0, x0y), (qn, xny) = (p, y)

detailing the yield

definition of yield in one step

definition of yield in one step

transitive property of yield

Version 47
234

Non-deterministic finite automata

• Theorem: if (q, x) |-* (p, e), (p, y) |-* (r, e) →
(q, xy) |-* (r, e)
– example: (q3, alma) |-* (q7, e), (q7, fa) |-* (q4, e) ↔

(q3, almafa) |-* (q4, e)
– let:

• M = (K, Σ, Δ, s, F) be a NFA
• q, r, p  K
• x, y  Σ*

Version 47
235

Non-deterministic finite automata

• Proof:
– (q, x) |-* (p, e) → (q, xy) |-* (p, y) by the previous

theorem
– if (q, xy) |-* (p, y), (p, y) |-* (r, e) → (q, xy) |-* (r, e) by

the transitive property of |-*

Version 47
236

Automata equivalence

• Definition of the equivalence of finite automata M1, M2:
L(M1) = L(M2)
– the automata can have different states and transitions

Version 47
237

NFA ↔ DFA

• A DFA can be seen as a special type of NFA
– there are no e transitions
– one symbol is read in one transitions
– the current state and symbol determines the next

state uniquely
– from each state there are exactly |Σ| transitions

Version 47
238

NFA ↔ DFA

• Construction:
– NFA is signed with q, Δ, F
– DFA is signed with Q', δ', F'
– q  K is one of the states which can be reached from

s by consuming the input so far
– idea: Q  K' is the set of states from K which can be

reached from s by consuming the input so far

Version 47
239

NFA ↔ DFA

• Construction:
– Q may have a label such as {q1, q5, q21} but it is a

single state of K'
– δ'(Q, a) = Q' is the set of states (of K) which can be

reached from one state of Q by reading 'a'
• possibly followed by a number of e transitions

Version 47
240

NFA ↔ DFA
• Construction:

– formally:
• E(q) = {p  K, (q, e) |-*M (p, e)}

– the set of states that can be reached from q by
zero or more e transition

• K' = P(K)
– we may not need all of them

• Σ' = Σ
• s' = E(s)
• F' = {Q  K : Q  F ≠ Ø}
•

q Q,(q,a,p) Δ

δ'(Q,a) = E(p)
 


Version 47
241

NFA ↔ DFA

• Remarks:
– M' is deterministic because the 4 properties to

differentiate DFA from NFA holds
– Ø  K'
– the cost to resolve determinism is to introduce 2|K|

new state
• the increase is exponential

Version 47
242

NFA ↔ DFA

• E(q) is the closure of the set {q} under the relation
{(p, r) : there is a transition (p, e, r)  Δ}

• E(q) can be computed by the following algorithm:
E(q) := {q};

while there is a transition (p, e, r)  Δ
with p  E(q) and r  E(q) do

E(q) := E(q)  {r};

Version 47
243

Example

• E(q0) =
• E(q1) =
• E(q2) =
• E(q3) =
• E(q4) =

 {q0, q1, q2, q3}
 {q1, q2, q3}
 {q2}
 {q3}
 {q3, q4}

Version 47
244

NFA ↔ DFA

Version 47
245

Example

• Defining δ':
– δ'(Q, a) = the set of all states of M that can be

reached from one state of Q by reading 'a'
• followed possibly by several e transitions

– s' = E(q0) = {q0, q1, q2, q3}
– δ'({q0, q1, q2, q3}, a) = E(q0)  E(q4) = {q0, q1, q2, q3,

q4}
• there are 'a' transitions only from q1 to q0 and q4;

and from q3 to q4

Version 47
246

NFA ↔ DFA

• Lemma: (q, w) |- M* (p, e), p  F ↔ (E(q), w) |-M'* (P, e),
p  P  F'
– NFA M and DFA M' accept the same w words
– w  Σ*, q, p  K
– read "p  P" as: some (not defined) P containing p

Version 47
247

NFA ↔ DFA

• Proof by induction on |w|:
– basis step:

• |w| = 0 ↔ w = e, we must show that
(q, e) |-M* (p, e), p  F ↔ (E(q), e) |-M'* (P, e),
p  P  F'

• let P = E(q)
• (E(q), e) |-M'* (E(q), e) by the reflexive property of

|-M'*
• (E(q), e) |-M'* (P, e) by the previous two points

NFA ↔ DFA

• (q, e) |-M* (p, e) ↔ p  E(q) by the definition of E(q)
• p  P by the previous point and P = E(q)
• P F' by p  P, p  F and the construction of F'
• comment:

– M can go from q to p (a final state) through e
arcs

– M' performs 0 step while processing e
» E(q) is both initial and final state of M'

Version 47
248

Version 47
249

– induction step: we prove the claim for k + 1
• let w = va, v  Σ*, a  Σ

– →
• suppose: (q, va) |-M* (p, e), p  F →

(q, va) |-M* (r, a) |-M (n, e) |-M* (p, e), r, n  K
– detailing the yield
– r, n exist but not defined exactly

• (q, va) |-M* (r, a) ↔ (q, v) |-M* (r, e) by the
end of input theorem

• (q, v) |-M* (r, e) ↔ (E(q), v) |-M'* (R, e), r  R by the
induction hypothesis

– R is not defined, but we know that r  R

NFA ↔ DFA

R P = δ'(R, a)

ea e
e

a
a

r

n

p

detailing the yield

end of input theorem

induction hypothesis

Version 47
250

• (E(q), v) |-M'* (R, e), r  R ↔
(E(q), va) |-M'* (R, a), r  R by the
end of input theorem

• let P = δ'(R, a), P is not defined exactly
• p  P because r  R, (r, a) |-M (n, e) |-M* (p, e), the

construction of δ'
• P = δ'(R, a) → (R, a) |-M' (P, e) by the

definition of the yield in one step
• p  P  F' by the construction of F'
• (E(q), va) |-M'* (R, a), (R, a) |-M' (P, e) → (E(q), va)

|-M'* (P, e), P  F' by the transitive property of yield

NFA ↔ DFA

R P = δ'(R, a)

ea e
e

a
a

r

n

p

construction

end of input theorem

definition of the yield in one step

transitive property of yield

Version 47
251

– ←
• suppose: (E(q), va) |-M'* (P, e), p  P  F' →

(E(q), va) |-M'* (R, a) |-M' (P, e), p  P, R  F'
– detailing the yield
– R exists but not defined exactly

• (E(q), va) |-M'* (R, a) ↔ (E(q), v) |-M'* (R, e) by the
end of input theorem

• (E(q), v) |-M'* (R, e) ↔ (q, v) |-*M (r, e), r  R by the
induction hypothesis

• (q, v) |-M* (r, e) ↔ (q, va) |-M* (r, a) by the
end of input theorem

• (R, a) |-M' (P, e) ↔ δ'(R, a) = P by the definition of
the yield in one step

NFA ↔ DFA

R P = δ'(R, a)

ea e
e

a
a

r

n

p

end of input theorem

end of input theorem

induction hypothesis

detailing the yield

Version 47
252

• δ'(R, a) = P →  (r, a, n)  Δ and p  E(n),
r  R, p, n  P by the construction of δ'

– δ′(ܴ,ܽ) = ⋃ ܧ ݎ 	௥ఢோ,(௥,௔,௡)ఢ୼

– p and n exist but not defined exactly
• (r, a) |-M (n, e) |-M* (p, e) by the

definition of the yield in one step, the definition of
the E(n) set, and the previous point

• (q, va) |-M* (r, a), (r, a) |-M (n, e) |-M* (p, e) ↔
(q, va) |-M* (p, e) by the transitive property of yield

• P  F' ↔  p  P  F by the construction of F'
• p  P  F → p  F

NFA ↔ DFA

R P = δ'(R, a)

ea e
e

a
a

r

n

p

construction

transitive property of yield

definition of the yield in one step

Version 47
253

NFA ↔ DFA

• Theorem: for each NFA M = (K, Σ, Δ, s, F), there is an
equivalent DFA M' = (K', Σ', δ', s', F')

• Proof: w  Σ*
– w  L(M) ↔ (s, w) |-M* (p, e), p  F

• by definition of acceptance
– (s, w) |-M* (p, e) ↔ (E(s), w) |-M'* (P, e), p  P  F'

• by the lemma
– (E(s), w) |-M'* (P, e), P  F'↔ w  L(M') by definition

of the acceptance

Version 47
254

Example

Version 47
255

Example

• Defining E sets
– E(q1)
– E(q2)
– E(q3)
– E(q4)
– E(q5)

• Initial state
– s' = E(q1) = {q1} = Q0

= {q1}
= {q2}
= {q2, q3, q4}
= {q4}
= {q5}

Version 47
256

• Defining δ'(P, )
– δ'({q1}, a) = Ø = Q1

– δ'({q1}, b) = E(q2) = {q2} = Q2

– δ'(Ø, a) = Ø = Q1

– δ'(Ø, b) = Ø = Q1

– δ'({q2}, a) = E(q3) = {q2, q3, q4} = Q3

– δ'({q2}, b) = Ø = Q1

– δ'({q2, q3, q4}, a) = E(q2)  E(q3)  E(q5) = {q2, q3, q4,
q5} = Q4

– δ'({q2, q3, q4}, b) = Ø = Q1

– δ'({q2, q3, q4, q5}, a) = E(q2)  E(q3)  E(q5) = {q2, q3,
q4, q5} = Q4

– δ'({q2, q3, q4, q5}, b) = E(q1) = {q1} = Q0

Version 47
257

Example

• Defining final states:
– F' = {Q3, Q4} = {{q2, q3, q4},

{q2, q3, q4, q5}}
– the final states contain q3

Version 47
258

Example

Version 47
259

Summary

• Non-deterministic behavior, NFA
• Difference of DFA and NFA
• Yield in one step, Yield
• String and language accepted by NFA
• Automata equivalence
• DFA ↔ NFA, construction, proof

Version 47
260

Next time
• Non-deterministic finite automata
• Finite automata and regular expressions

Version 47
261

Elements of the Theory of Computation

Lesson 6
2.3. Non-deterministic finite automata

2.4. Finite automata and regular expressions

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com

Last time

• Non-deterministic behavior
• NFA
• Difference of DFA and NFA
• Yield in one step
• Yield
• String accepted by NFA
• Language accepted by NFA
• Automata equivalence
• DFA ↔ NFA, construction, proof

Version 47
262

Finite automata

• RE → NFA
• Closure properties

– union
– concatenation
– Kleene star
– complementation
– intersection

• Algorithms for automata
• RE ↔ NFA
• Pumping theorem 1
• Languages that are not regular

Version 47
263

Version 47
264

RE → NFA

• Some theorems help us to create NFA which is
equivalent with some regular expression
– Thomson's construction
– regular expressions define regular languages

• The theorems include construction, i.e., they not only
prove the existence but provide the required automaton

Version 47
265

RE → NFA

• These theorems helps to prove that RE and NFA are
equivalent
– for a given regular expression an NFA always exists

which accepts the same language what the regular
expression generates

– for a given NFA always exists a regular expression
which generates the same language what the NFA
accepts

Thompson

• Kenneth Lane Thompson (1943)
– American pioneer of computer science
– his work:

• the B programming language
• the C programming language
• one of the creators and early developers of the

Unix and Plan 9 operating systems
• regular expressions
• early computer text editors QED and ed

Version 47
266

Version 47
267

Union

• Theorem: languages accepted by finite automata are
closed under union
– if L(M1), L(M2) are languages accepted by finite

automata M1 and M2 →  a finite automata M such
that L(M) = L(M1) L(M2)

• the term closed is used because the new automata
M is the same type as M1,M2, finite automata

– the union of two regular languages is also regular

Union

• Comments:
– M1,M2, are NFAs
– L(M1), L(M2) are languages accepted by finite

automata M1 and M2

– L(M1) L(M2) is also a language
– L(M) = L(M1) L(M2) is accepted by automaton M
– M is a finite automation (the same type as M1 and M2)

Version 47
268

Version 47
269

Union

M1

M2

F1

F2

s1

s2

M1

M2

F1

F2

s1

s2

e

es

Version 47
270

Union

• Construction:
– NFA M1, M2 are known
– M1 = (K1, Σ, Δ1, s1, F1), M2 = (K2, Σ, Δ2, s2, F2)

• K1 and K2 are disjoint
– M = (K, Σ, Δ, s, F)

• K = K1  K2  {s}
– s is a new state not in K1  K2

• Σ are the same for the 3 automata
• Δ = Δ1  Δ2  {(s, e, s1), (s, e, s2)}
• F = F1  F2

Version 47
271

Union
• Proof:

– suppose w  L(M)
• w  L(M) → (s, w) |-M* (q, e), q  F by the

definition of acceptance
• (s, w) |-M (s1, w) |-M* (q, e), q  F1 or

(s, w) |-M (s2, w) |-M* (q, e), q  F2 by the
construction of M and the previous point

M1

M2

F1

F2

s1

s2

e

es

Version 47
272

Union

• (s1, w) |-M* (q, e) → (s1, w) |-M1* (q, e), q  F1 by the
construction of M

– (s1, w) |-M1* (q, e), q  F1 → w  L(M1) by the
definition of acceptance

• or (s2, w) |-M* (q, e) → (s2, w) |-M2* (q, e), q  F2 by
the construction of M

– (s2, w) |-M2* (q, e), q  F2 → w  L(M2) by the
definition of acceptance

• w  L(M) → w  L(M1) or w  L(M2) →
L(M)  L(M1)  L(M2)

M1

M2

F1

F2

s1

s2

e

es

Version 47
273

Union

– suppose w  L(M1)  L(M2)
• w  L(M1)  L(M2) → (s1, w) |-M1* (q, e),

q  F1 or (s2, w) |-M2* (q, e), q  F2 by the definition
of acceptance

• (s1, w) |-M1* (q, e) → (s1, w) |-M* (q, e), q  F1 by the
construction of M

• (s2, w) |-M2* (q, e) → (s2, w) |-M* (q, e), q  F2 by the
construction of M

• (s, e, s1), (s, e, s2)  Δ by the construction of M

M1

M2

F1

F2

s1

s2

e

es

Version 47
274

Union

• (s, e, s1), (s, e, s2)  Δ → (s, w) |-M (s1, w),
(s, w) |-M (s2, w)

• (s, w) |-M (s1, w), (s1, w) |-M* (q, e) →
(s, w) |-M* (q, e), q  F1 by the transitivity of |-M*

• (s, w) |-M (s2, w), (s2, w) |-M* (q, e) →
(s, w) |-M* (q, e), q  F2 by the transitivity of |-M*

• (s, w) |-M* (q, e), q  F1 or q  F2 → w  L(M) by
the definition of acceptance

• w  L(M1)  L(M2) → w  L(M) →
L(M1)  L(M2)  L(M)

– L(M)  L(M1)  L(M2), L(M1)  L(M2)  L(M) →
L(M) = L(M1)  L(M2)

M1

M2

F1

F2

s1

s2

e

es

Version 47
275

Union

• M uses non-deterministic behavior to guess which
direction is correct

• M is finite automaton because we started from two finite
automata and added 1 new state and 2 transitions

Version 47
276

Concatenation

• Theorem: languages accepted by finite automata are
closed under concatenation
– if L(M1), L(M2) are languages accepted by finite

automata M1 and M2 →  a finite automata M such
that L(M) = L(M1) ◦ L(M2)

Version 47
277

Concatenation

Version 47
278

Concatenation

• Construction:
– NFA M1, M2 are known
– M1 = (K1, Σ, Δ1, s1, F1), M2 = (K2, Σ, Δ2, s2, F2)

• K1 and K2 are disjoint
– M = (K, Σ, Δ, s, F)

• K = K1  K2 (K1 and K2 are disjoint)
• Σ are the same for the 3 automata
• Δ = Δ1  Δ2  (F1 x {e} x {s2})
• s = s1

• F = F2

Version 47
279

Kleene star

• Stephen Cole Kleene (1909 –1994)
– American mathematician
– helped to lay the foundations for theoretical computer

science
– a number of mathematical concepts are named after

him:
• Kleene hierarchy
• Kleene algebra
• the Kleene star (Kleene closure)
• Kleene's recursion theorem
• Kleene fixpoint theorem

Version 47
280

Kleene star

• Theorem: languages accepted by finite automata are
closed under Kleene star
– if L(M1) is a language accepted by finite automata M1

→  a finite automata M such that L(M) = L(M1)*

Version 47
281

Kleene star

• Starting state must be final because L(M1)* contains e

Version 47
282

Kleene star

• This state diagram is not correct
– the automaton may accept wrong word if it halts in s1

e

e

M1
a

Version 47
283

Kleene star

• Construction:
– NFA M1 is known
– M1 = (K1, Σ, Δ1, s1, F1)
– M = (K, Σ, Δ, s, F)

• K = K1  {s}, s  K1

• Δ = Δ1  {(s, e, s1)}  (F1 × {e} × {s1})
• s = s
• F = F1  {s}

Version 47
284

Example

• Construct NFA M such that L(M) = (a  b)a !
– create a basic machine for every σ  Σ in the regular

expression
– use the constructions stated before to connect the

machines
– at union the machines should be ordered vertically, at

concatenation horizontally

Example

• L(M) = (a  b)a

Version 47
285

Version 47
286

Example

• Construct NFA M such that L(M) = a*  b* !

a

b

e

e

e

e

e

e

Version 47
287

Example

• Construct NFA M such that L(M) = (ab  aab)* !

Version 47
288

Complementation

• Theorem: languages accepted by finite automata are
closed under complementation
– if L(M1) is a language accepted by finite automata M1

→  a finite automaton M such that
L(M) = Σ* - L(M1) = L(M1)C

Complementation

Version 47
289

Version 47
290

Complementation

• Construction:
– DFA M1 is known

• M1 = (K1, Σ, δ1, s1, F1)
• if M1 is not DFA then it must be converted

– M = (K, Σ, δ, s, F)
• K = K1

• δ = δ1

• s = s1

• F = K1 - F1

• CFG is not closed under complementation

Version 47
291

Intersection

• Theorem: languages accepted by finite automata are
closed under intersection
– if L(M1), L(M2) are languages accepted by finite

automata M1 and M2 →  a finite automata M such
that L(M) = L(M1)  L(M2)

• the intersection of two languages accepted by
finite automata can be also accepted by a finite
automata

Version 47
292

Intersection

• Construction:
– apply the previous constructions for M1 and M2

• NFA → DFA twice
• complementation theorem twice
• union once
• NFA → DFA
• complementation theorem once again

Version 47
293

Intersection

• Proof:
– languages accepted by finite automata are closed

under union and complementation
– intersection can be expressed by these two operation
– L(M) = L(M1)  L(M2) = (L(M1)C  L(M2)C)C

• De'Morgan identity

Version 47
294

L(M) = Σ* ?

• Theorem: there is an algorithm for deciding if L(M) = Σ*
– finite automaton M accepts each possible string

• Proof:
– L(M) = Σ* ↔ L(M)C = Ø

• construct M1 such that L(M1) = L(M)C

• use theorem about complementation
– L(M1) = Ø ↔ if there is no directed path from s1 to any

element of F1 on the state diagram of M1

Version 47
295

Algorithm for deciding if there is a direct path

denote(A: point, N: number of points)

sign(A)

for i = 1 to N do

if isEdge(A, pi) and !isSigned(pi) then

denote(i, N)

end

bool isDirectedPath(A: startPoint,
B: endPoint, N: number of points)

denote(A, N)

if isSigned(B) then return true

else return false

end

Version 47
296

L(M1)  L(M2) ?

• Theorem: there is an algorithm for deciding if
L(M1)  L(M2)
– M1 and M2 are finite automata

• Proof:
– L(M1)  L(M2) ↔ L(M1)  L(M2)C = Ø
– we know how to check if L = Ø

Version 47
297

L(M1) = L(M2) ?

• Theorem: there is an algorithm for deciding if
L(M1) = L(M2)
– M1 and M2 are finite automata

• Proof:
– L(M1) = L(M2) ↔ L(M1)  L(M2) and L(M2)  L(M1)

• we know how to check if L1  L2

– it is an algorithm and not the definition of the
equivalence of two automata

Version 47
298

RE ↔ NFA

• Theorem: a language is regular ↔ it is accepted by a
finite automaton

• Proof: →
– recall that  is the set of regular languages

• Ø  , {a}    a  Σ
• if A, B   → A  B  , A◦B  , A*  
•  is minimal

– there are finite automata to accept the empty set and
the singleton languages

– languages accepted by finite automata are closed
under union, concatenation, and Kleene star

Version 47
299

RE ↔ NFA

• Proof: ←
– for each NFA an equivalent RE can be constructed, it

is not proved here

Version 47
300

Pumping theorem 1

• Theorem: let M(K, Σ, δ, s, F) is a DFA, long enough
words in L(M) (|w|  |K|) has a form, w = xyz, y ≠ e,
such that xynz  L(M),  n  0

• Proof:
– idea: if L(M) is infinite then the state diagram of M

must contain a loop

Version 47
301

Pumping theorem 1

– let w  L(M) such that |w| = k  |K|
• w exists since L is infinite
• w = 12…k

– (q0, 12…k) |- (q1, 2…k) |- ... |- (qk-1, k) |- (qk, e)
• q0 = s, qk  F
• the number of yield in one step is k

– since k  |K|,  qi, qj, such that qi = qj, i ≠ j, (i<j)

Version 47
302

Pumping theorem 1

– i+1i+2 …j string moves M from state qi to state qj

– i+1i+2 …j can be removed or repeated without
affecting the acceptance of w

– 12…i(i+1i+2 …j)nj+1…k  L(M) for n  0
• x = 12…i

• y = i+1i+2 …j

• z = j+1…k

x
s

M

z

qi

y

Example

• L(M) = {w  (ab)*: #a odd in w}
– |K| = 2
– w = bbabaa is long enough
– the previous theorem does not tell how to construct x,

y, z, it states only their existence
– let us say the revisited node is q0

• x = b, y = baba, z = a are valid strings
– xy0z = ba  L(M), xy1z = bbabaa  L(M),

xy2z = bbabababaa  L(M), ...
• x = e, y = bbaba, z = a are valid strings too

– we can say that the revisited node is q1

Version 47
303

Version 47
304

Languages that are not regular

• Theorem: L = {anbn : n0} is not regular
• Proof by indirection:

– assume that L is regular and apply the pumping
theorem for a long enough string akbk, where k is a fix
number

– xynz = akbk

– x = an1, y = an2, z = bn3

• n1, n2, n3  N are fix numbers
• xynz = an1ann2bn3

• n1+ nn2 = n3 for  n, contradiction

aaaabbbb

x y z

Version 47
305

Languages that are not regular

– x = an1, y = an2bn3, z = bn4

• xynz = an1(an2bn3)nbn4  L as b precedes 'a' if
n > 1

– x = an1, y = bn2, z = bn3

• xynz = an1bnn2bn3

• n1 = nn2 + n3 for n, contradiction

aaaabbbb

x y z

aaaabbbb

x y z

Version 47
306

Languages that are not regular

– x = an1bn2, y = bn3, z = bn4

• xynz = an1bn2bnn3+n4

• n1 + nn2 + n3 = n4 for n, contradiction
– x = an1, y = an2, z = an3bn4

• xynz = an1ann2+n3bn4

• n1 + nn2 + n3 = n4 for n, contradiction
– L is not regular because with finite state we cannot

keep in mind the number of 'a' symbols if this value
has no upper limit

aaaabbbb

x y z

aaaabbbb

x y z

Version 47
307

Languages that are not regular

• Theorem: L = {an : n is prime} is not regular
• Proof by indirection:

– assume that L is regular and apply the pumping
theorem for a long enough string ak, where k is a fix
number

Version 47
308

Languages that are not regular

– xynz = ak

• x = ap, y = aq, z = ar for some p, q, r  N, q ≠ 0
• p+nq+r is prime for  n

– let n = p+2q+r+2
– p+nq+r = p+(p+2q+r+2)q+r =

p+pq+2qq+rq+2q+r = (q+1)(p+2q+r),
contradiction

– L is not regular because there is no simple periodicity
in the set of prime numbers

Summary

• RE → NFA
• Closure properties
• Algorithms for automata
• Pumping theorem 1
• Languages that are not regular

Version 47
309

Next time
• Context-free grammars

Version 47
310

Elements of the Theory of Computation

Lesson 7
3.1. Context-free grammars

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com

Last time

• RE → NFA
• Closure properties
• Algorithms for automata
• Pumping theorem 1
• Languages that are not regular

Version 47
311

Context-free grammars

• Context-free languages
• Context-free grammars
• Derivation
• Language generated by CFG
• Regular grammars
• NFA ↔ RG

Version 47
312

Version 47
313

Context-free languages

• Language recognizer
– a device that accepts valid strings
– e.g.: NFA, DFA

• Language generator
– a device that are capable of producing valid strings
– e.g.: regular expressions

Version 47
314

Regular expressions

• Regular expressions can be viewed as a language
generator
– RE1 = a(a*  b*)b

• first output 'a'
• then output a number of 'a' or output a number of b
• finally output b

Version 47
315

Context-free grammars

• There are more complex sorts of language generators,
called context-free grammars (CFG)

• They apply rules to generate a string
– it's not completely determined which rule to use

• Let us generate the same language as before with CFG
– RE1 = a(a*  b*)b

Version 47
316

Context-free grammar

• Introduce new symbols
– S: a string in the language
– M: middle part of the string
– A: a number of consecutive 'a'
– B: a number of consecutive b

RE1 = a(a*  b*)b

Version 47
317

Context-free grammar

• Introduce rules to express the meaning of the new
symbols
– S → aMb

• where → is read as "can be"
• this rule says that a string in the language starts

with 'a' then comes a middle part and ends with b
– M → A
– M → B

• the middle part can be a number of consecutive 'a'
or 'b'

• the or relation is expressed with two rules

RE1 = a(a*  b*)b

Version 47
318

Context-free grammar

– A → e
• a number of consecutive 'a' can be e

– A → aA
• a number of consecutive 'a' can be 1 'a' followed

by a number of consecutive 'a'
– B → e
– B → bB

RE1 = a(a*  b*)b

Version 47
319

Context-free grammar

• It is easy to see that RE1 and the newly introduced CFG
generates the same language

• Algorithm for generating a string with a CFG:
start with the string S

while the string contains new symbols

select a new symbol

select a corresponding rule (the left
side of the rule = new symbol)

replace the new symbol with the right
side of the rule

RE1 = a(a*  b*)b

Version 47
320

Example

• To generate the string aaab
– start with S
– apply the rules

• S → aMb resulting in aMb
• M → A resulting in aAb
• A → aA resulting in aaAb
• A → aA resulting in aaaAb
• A → e resulting in aaab

RE1 = a(a*  b*)b

Version 47
321

Context-free grammar

• Consider the string aaAb, which was an intermediate
stage in the generation of aaab
– we call the strings aa and b, which surround the

symbol A, the context of A in this particular string
• 'a' and e are also the context of A

– the rule A → aA says that we can replace A by the
string aA no matter what is the context of A

• that is why the current grammar is called context
free

• example for a rule which cannot be in CFG:
aaAb → abA, SaS → bbA

RE1 = a(a*  b*)b

Version 47
322

Context-free grammar

• Definition of context-free grammar, G: a quadruple
(V, Σ, R, S) where
– V an alphabet
– Σ  V the set of terminals

• a string of a language contains only terminals
• V-Σ is the set of non-terminals (the new symbols)

– R (V-Σ) × V* set of rules
• the left side of a rule is always a single

non-terminal
• we can write a rule (A, u)  R in the next form

A →G u
– S  V-Σ start symbol

Version 47
323

Derivation

• Definition of the one step derivation, =>G:
– u = xAz, v = xyz, x, y, z  V*, A  V-Σ
– if A →G y  R → xAz =>G xyz

• When the grammar to which we refer to is obvious, we
can write A → w and xAz => xyz instead of A →G w and
xAz =>G xyz

• Definition of derivation, =>G*: the reflexive, transitive
closure of =>G

Version 47
324

Derivation

• We call the sequence w0 =>G w1 =>G … =>G wn
a derivation of wn from w0 in G
– w0, w1, … wn  V*

• we term wi as a partially defined string because it
can contain a non-terminal

– if the derivation has exactly n  N steps then it can be
emphasized as w0 =>n wn

• E.g.: S => aMb => aAb => aaAb => aaaAb => aaab
– see the CFG introduced previously

Version 47
325

Language generated by CFG

• Definition of language generated by CFG G, L(G): the
set of strings generated by G
– L(G) = {w  Σ* : S =>G* w}

• Definition of context-free language L:  context-free
grammar G such that L = L(G)
– nota bene: language and grammar are different

concepts

Version 47
326

Example

• Give grammar G(V, Σ, R, S) such that
L(G) = {anbn : n ≥ 0}!
– V = {S, a, b}
– Σ = {a, b}
– R = {S → aSb, S → e}

• S → aSb | e is a shorthand for the two rules above
• A possible derivation is

S => aSb => aaSbb => aabb
– the first two steps used the rule S → aSb and the last

used the rule S → e

Example

• Which words can derived at most in 4 steps with
G = {V, Σ, R, S} grammar from S ?
– V = {a, b, A, B, S}
– Σ = {a, b}
– R = {S → A, S → abA, S → aB, A → a, B → Sb}

• Solution:
– S =>G A =>G a
– S =>G aB =>G aSb =>G aAb =>G aab
– S =>G abA =>G aba
– S =>G aB =>G aSb =>G aabAb =>G aabab

327
Version 47

Version 47
328

Example

• Create a (partial) grammar for the English language
– V = {S, A, N, V, P}  Σ

• S stands for sentence, A for adjective, N for noun,
V for verb, and P for phrase

– Σ = {Jim, big, green, cheese, ate}
• beware: here the elements of Σ are strings

– R = {P → N | AP, S → PVP, A → big | green,
N → cheese | Jim, V → ate}

Version 47
329

Example

• The following are some strings in L(G)
– Jim ate cheese
– big Jim ate green cheese
– big cheese ate Jim

• Unfortunately, these are also strings in L(G)
- big cheese ate green green big green big cheese
- green Jim ate green big Jim

Version 47
330

Example

• Create grammar G which can generate mathematical
statements such as (id*id+id)*(id+id)!
– id stands for any identifier such as variable name,

reserved words of the language, or numerical
constants

Version 47
331

Example

• G(V, Σ, R, E), where
– V = {+ ,* , (,), id, T, F, E}

• E - expression, T - term, F - factor
– Σ = {+ , *, (,), id}
– R = {E → E + T, (R1)

E → T, (R2)
T → T * F, (R3)
T → F, (R4)
F → (E), (R5)
F → id} (R6)

Version 47
332

Example

• Generation of (id*id + id) * (id + id)
– the course compilers helps to determine which rule

should be used
E => T by Rule R2

=> T * F by Rule R3
=> T * (E) by Rule R5
=> T * (E + T) by Rule R1
=> T * (T + T) by Rule R2
=> T * (F + T) by Rule R4
=> T * (id + T) by Rule R6
=> T * (id + F) by Rule R4

Version 47
333

Example

=> T * (id + id) by Rule R6
=> F * (id + id) by Rule R4
=> (E) * (id + id) by Rule R5
=> (E + T) * (id + id) by Rule R1
=> (E + F) * (id + id) by Rule R4
=> (E + id) * (id + id) by Rule R6
=> (T + id) * (id + id) by Rule R2
=> (T*F + id) * (id + id) by Rule R3
=> (F*F + id) * (id + id) by Rule R4
=> (F*id + id) * (id + id) by Rule R6
=> (id*id + id) * (id + id) by Rule R6

Version 47
334

Regular grammars

• Definition of regular grammars, RG: such a CFG for
which R  (V-Σ) × Σ*((V-Σ)  {e})
– there can be at most one non-terminal at right side of

a rule, if there is, it must be at the right end
– R is reduced from (V-Σ) × V*

• Example: G = (V, Σ, R, S) is RG
– V = {S, A, B, a, b}
– Σ = {a, b}
– R = {S → bA | aB | e, A → abaS, B → babS}

Version 47
335

NFA ↔ RG

• Theorem: a language is regular ↔ it can be created by a
RG

• Construction: →
– suppose that L is regular
– L is accepted by some NFA M(K, Σ, Δ, s, F)
– construct RG G(V, Σ, R, S) such that L(M) = L(G)

• V = K  Σ
– K will be the non-terminals of G

• R = {q → xp : (q, x, p)  Δ }  {q → e : q  F}
– for each transition from q to p on input x  Σ*

we have in R the rule q → xp
• S = s

Version 47
336

• Proof:
–  w  L(M) ↔ (s, w) |-* (p, e), p  F by the definition

of acceptance
– (s, w) |-* (p, e), p  F ↔ (p0, w1w2…wn) |-

(p1, w2…wn) |- … |- (pn, e), pn  F by the definition of
the yield

• w = w1w2…wn, p0, ... pn  K, p0 = s, pn = p
– (p0, w1w2…wn) |- (p1, w2…wn), (p1, w2…wn) |-

(p2, w3…wn), … ↔  transitions (p0, w1, p1),
(p1, w2, p2), ...  Δ by the definition of the yield in one
step

NFA ↔ RG

Version 47
337

–  (p0, w1, p1), (p1, w2, p2), ...  Δ ↔  rules: p0 →
w1p1, p1 → w2p2, ... by the construction of G

–  rules: p0 → w1p1, p1 → w2p2, ... ↔ p0 => w1p1 =>
w1w2p2 => … => w1w2…wnpn ↔ s =>* wpn by the
definition of the one step derivation and the transitivity
of yield

• p0, ... pn  V-Σ
– pn  F ↔  rule pn → e by the construction of G
– s =>* wpn,  rule pn → e ↔ s =>* w by the transitive

property of yield
– s =>* w ↔ w  L(G) by the definition of acceptance

NFA ↔ RG

Version 47
338

Example

• Construct such a RG G = (V, Σ, R, S) which is equivalent
with the given NFA!

– V = {a, b, P, Q}
– Σ = {a, b}
– R = {P → aP, P → bP,

P → abaQ, Q → aQ, Q → bQ, Q → e}
– S = P

• Give the computation and derivation for w = ababb !
– (p, ababb) |- (q, bb) |- (q, b) |- (q, e)
– S = P => abaQ => ababQ => ababbQ => ababb

Version 47
339

Example

• Construct such a RG G = (V, Σ, R, S) which is equivalent
with the given NFA!

– V = {a, b, A, B, S}
– R = {S → aS | bA, A → aB | bA, B → aS | bA,

B → e, S → e}

Version 47
340

NFA ↔ RG

• Construction: ←
– suppose L is generated by some RG G(V, Σ, R, S)
– construct NFA M(K, Σ, Δ, s, F) such that L(M) = L(G)

• K = (V-Σ)  {f}, where f  V
• Δ = {(A, w, B) : A → wB  R, A, B  V-Σ, w  Σ*} 

{(A, w, f) : A → w  R, A  V-Σ, w  Σ*}
• s = S
• F = {f}

Version 47
341

• Proof:
–  w  L(G) ↔ S =>* w by the definition of acceptance
– S =>* w ↔ A1 => w1A2 => w1w2A3 => … =>

w1w2…wn-1An => w1w2…wn by the definition of yield
• if w can be reached in n steps then these steps

can be written down one by one
• A1, …, An  V-Σ, A1 = S, w = w1w2…wn

– A1 => w1A2 => w1w2A3 => … => w1w2…wn-1An =>
w1w2…wn ↔  A1 → w1A2, A2 → w2A3, ...  R by the
definition of the one step derivation

NFA ↔ RG

Version 47
342

–  rules A1 → w1A2, A2 → w2A3, ... ↔  (A1, w1, A2),
(A2, w2, A3), ...  Δ by the construction of M

–  (A1, w1, A2), (A2, w2, A3), ...  Δ ↔ (A1, w1w2…wn) |-
(A2, w2w3…wn) |- ... |- (An, wn) ↔ (S, w) |-* (An, wn) by
the definition of the yield in one step

–  rule An → wn ↔  (An, wn, f)  Δ by the
construction of M

–  (An, wn, f)  Δ ↔ (An, wn) |- (f, e) by the definition of
the yield in one step

– (S, w) |-* (An, wn), (An, wn) |- (f, e) ↔ (S, w) |-* (f, e)
by the transitive property of yield

– (S, w) |-* (f, e), f  F ↔ w  L(M) by the definition of
acceptance

NFA ↔ RG

Version 47
343

Example

• Construct such NFA M which is equivalent with the given
RG G=(V, Σ, R, S)!
– V = {a, b, A, B, S}
– Σ = {a, b}
– R = {S → aA | bB | e, A → abS,

B → baS | a}
– S = S
– L(G) = (aab  bba)*(ba  e)

A
e

B

ba

b

aS

ab

f a

Version 47
344

Example

• Give the derivation and computation for w = aabbba !
– S => aA => aabS => aabbB =>

=> aabbbaS => aabbba
– (S, aabbba) |- (A, abbba) |-

|- (S, bba) |- (B, ba) |- (S, e) |- (f, e)
• Give the derivation and

computation for w = bbaaab !
– S => bB => bbaS => bbaaA => bbaaabS => bbaaab
– (S, bbaaab) |- (B, baaab) |- (S, aab) |- (A, ab) |-

|- (S, e) |- (f, e)

A
e

B

ba

b

aS

ab

f a

Summary

• Context-free languages
• Context-free grammars
• Derivation
• Language generated by CFG
• Regular grammars
• NFA ↔ RG

Version 47
345

Next time
• Pushdown automata

Version 47
346

Elements of the Theory of Computation

Lesson 8
3.3. Pushdown automata

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com

Last time

• Context-free languages
• Context-free grammars
• Derivation
• Language generated by CFG
• Regular grammars
• NFA ↔ RG

Version 47
347

Pushdown automata

• Pushdown automata
• Configuration
• Yield in one step
• Yield
• String accepted by PDA
• Language accepted by PDA
• State diagram

Version 47
348

Version 47
349

Version 47
350

Pushdown automata

• Not every context-free language can be recognized by a
finite automaton
– some context-free languages are not regular
– e.g.: {anbn : n  N}

• What extra features do we need to add to the finite
automata so that they accept any context-free language?

Version 47
351

Pushdown automata

• Consider L = {wcwR : w  {a, b}*}!
– L can be generated by a CFG containing rules:

S → aSa, S → bSb, S → c
– it seems any device capable accepting L must

remember the first half of the input string so it can
check it against the second half

Version 47
352

Pushdown automata

• The language of balanced parenthesis:
– G = ({S, (,)}, {(,)}, {S → e | SS | (S)}, S)

• What algorithm can decide this language?
– start counting at zero
– add one for every left parentheses
– subtract one for every right parenthesis
– reject a string if the count either goes negative at any

time or ends up different from zero
• otherwise it should be accepted

Version 47
353

Pushdown automata

• The counter can be considered as a special case of a
stack, on which only one kind of symbol can be written
– states cannot be used because the input can be

longer than the number of states
• Rules of the regular grammar, e.g., A → aB, are easy to

simulate by a finite automaton, as follows:
– if in state A reading 'a' go to state B
– see RG ↔ NFA

• What about a rule whose right-hand side is not a
terminal followed by a non-terminal?

Version 47
354

Pushdown automata

Version 47
355

Pushdown automata

• Components of a pushdown automata (PDA):
– input tape with reading head

• each tape cell contains a symbol from Σ
• the tape is infinite to the right

– control unit
• finite number of states

– stack with reading head
• last in first out (LIFO) data structure
• infinite capacity

Version 47
356

Pushdown automata

• Definition of pushdown automata, M: a six-tuple
(K, Σ, Γ, Δ, s, F) where
– K set of states (finite)
– Σ alphabet of the input symbols (finite)
– Γ alphabet of the stack symbols

• can be different from Σ
– Δ  (K×Σ*×Γ*) × (K×Γ*) transition relation

• according to book Δ  (K×(Σ  {e})×Γ*) × (K×Γ*)
– s  K initial state
– F  K set of final states

Version 47
357

Pushdown automata

• The meaning of transition relation:
– if ((p, α, β), (q, γ))  Δ
– then from state p, reading α, popping β M goes to

state q while pushing γ
• if α = e, then the input is not consulted
• replaces β by γ on the top of the stack

• The PDA described here is non-deterministic
– there is deterministic PDA but it is not equivalent with

the non-deterministic PDA

Version 47
358

• Stack operations
– push: a symbol is added to the top of the stack

• ((p, u, e), (q, a)) pushes 'a'
– pop: a symbol is removed from the top of the stack

• ((p, u, a), (q, e)) pops 'a'

Pushdown automata

Version 47
359

Pushdown automata

• Every finite automaton can be viewed as a pushdown
automaton
– let M = (K, Σ, Δ, s, F) be an NFA
– let M' = (K, Σ, Ø, Δ', s, F) be a PDA

• Δ' = {((p, u, e), (q, e)) : (p, u, q)  Δ}
– M' does not consult its stack otherwise simulates the

transition of M
– L(M) = L(M')

Version 47
360

Configuration

• Definition of configuration of a PDA M = (K, Σ, Γ, Δ, s, F):
an ordered triple of the current state of M, the unread
part of the input, and the whole stack
– it is an element of K×Σ*×Γ*
– there is no need to store the whole input because the

reading head cannot go to the left, so, the already
read input cannot affect the result

– e.g.: (q, bbb, abc)
• 'a' is at the top of the stack

Version 47
361

Yields in one step

• Definition of yield in one step of a PDA, |-M: a relation
between two "neighboring" configurations
– formally:

• if x, y  Σ*, q, p  K, β, , γ  Γ*,
((p, x, β), (q, γ))  Δ

• then ((p, xy, β), (q, y, γ))  |- or
(p, xy, β) |-M (q, y, γ)

• we say: (p, xy, β) yields (q, y, γ) in one step
• If it is unambiguous that the yield corresponds to which

PDA then the subscript M may be omitted

((p, x, β), (q, γ))  Δ

(p, xy, β) |-M (q, y, γ)

Version 47
362

Computation

• Definition of computation by PDA M: a sequence of
configuration C0, C1, ... Cn such that C0 |- C1 |- ... |- Cn

– e.g.: (q1, abaa, e) |- (q2, aa, xx) |- (q1, e, e)
– the length of a computation is the number of yield in

one step applied
– the first and the last configuration can be connected

with the yield in n steps relation, signed as |-n

• e.g.: (q1, abaa) |-3 (q3, a)

Version 47
363

Yield

• Definition of yield of a PDA, |-M*: the reflexive, transitive
closure of |-M

– if (q', w', α') can be reached from (q, w, α) through a
number of yield in one step operation then the yield
operation holds between (q, w, α) and (q', w', α')

• denoted as: (q, w, α) |-* (q', w', α')

Version 47
364

String accepted by PDA

• Definition of string accepted by PDA M: w  Σ* is
accepted by M if (s, w, e) |-* (q, e, e), q  F
– the automaton is in final state
– the whole input is read
– the stack is empty

Version 47
365

String accepted by PDA

• The yield in PDA can lead to different configurations
reading the same input
– there are possible branching at the computation of w
– if there is as much as one path to (q, e, e), q  F then

w is accepted
• If PDA M cannot process the whole input because the

missing transitions then w is rejected

Version 47
366

Language accepted by PDA

• Definition of language accepted by PDA M, L(M): the set
of strings accepted by M
– L(M) = {w  Σ* : (s, w, e) |-M* (q, e, e), q  F}

Version 47
367

State diagram

Version 47
368

Example

• Design a pushdown automaton M to accept the
language L = {wcwR : w  {a, b}*}!
– e.g.: ababcbaba  L, abcab, cbc  L
– M = (K, Σ, Γ, Δ, s, F) where K = {s, f}, Σ = {a, b, c},

Γ = {a, b}, F = {f} and Δ is
• (1) ((s, a, e), (s, a))
• (2) ((s, b, e), (s, b))
• (3) ((s, c, e), (f, e))
• (4) ((f, a, a), (f, e))
• (5) ((f, b, b), (f, e))

– you may omit the inner parenthesis in a
transition

Version 47
369

Example

• Transitions:
– 1, 4 corresponds to rule: S → aSa
– 2, 5 corresponds to rule: S → bSb
– 3 corresponds to rule: S → c

• Operation:
– in state s reads the first half of its input

• transitions 1 and 2 read w while pushing a
corresponding stack symbols into the stack for
each input symbol

– 'a' corresponds to 'a', b corresponds to b now

Version 47
370

Example

– switches state from s to f without consulting its stack,
when M sees c in the input string

– in state f reads the second half of its input
• transitions 4 and 5 remove the top symbol from the

stack, if the corresponding input symbol is read

Version 47
371

Example

• The input is accepted if
– the automaton can reach configuration (f, e, e)

• The input is rejected if
– not exactly one c is encountered
– in the second phase of operation the top stack symbol

and the next input symbol does not match
– the stack and the input is not finished at the same

time

Version 47
372

Example

• The emphasis is shifted from the meaning of the states
to the meaning of the stack symbols
– there are fewer states but they still have meaning

• state s: we are before c
• state f: we are after c

– a symbol in the stack means that the same symbol
must be at the corresponding position

• e.g.: ba in stack (b at the top) means that the word
must finished with ba

Version 47
373

Example

4eef
5aaf
5babaf
3bbabbaf
2bbacbbas
2babcbbas
1abbcbbas
-eabbcbbas

Transition usedStackUnread inputState

Version 47
374

Example

• Design a pushdown automaton M to accept the
language L = {wwR : w  {a, b}*} !
– M = (K, Σ, Γ, Δ, s, F), where K = {s, f}, Σ = {a, b},

F = {f} and Δ is the set of the following five transitions
• (1) ((s, a, e), (s, a))
• (2) ((s, b, e), (s, b))
• (3) ((s, e, e), (f, e))
• (4) ((f, a, a), (f, e))
• (5) ((f, b, b), (f, e))

Version 47
375

Example
• The language is very similar to the previous one but

there is no way to determine the middle of the string
– with two complete read of the input it could be done

easily because then you know the length of w
• In state s, M can non-deterministically choose either

– to push the next input symbol onto the stack
– to switch to state f without consuming any input

• middle point has been reached
• Therefore even starting from a string of the form wwR, M

has computations that do not lead it to the accepting
configuration (f, e, e)
– but there is at least one that does

Version 47
376

Example
• Design a pushdown automaton M to accept

L = {w  {a, b}* : w has the same number of 'a' and b} !
• M = (K, Σ, Γ, Δ, s, F), where K = {s, q, f}, Σ = {a, b},

Γ = {a, b, c}, F = {f}, and Δ is listed below
– (1) ((s, e, e), (q, c))
– (2) ((q, a, c), (q, ac))
– (3) ((q, a, a), (q, aa))
– (4) ((q, a, b), (q, e))
– (5) ((q, b, c), (q, bc))
– (6) ((q, b, b), (q, bb))
– (7) ((q, b, a), (q, e))
– (8) ((q, e, c), (f, e))

q

b↑b↓bb, b↑a

s

b↑c↓bc,

e↓c e↑c

a↑c↓ac, a↑a↓aa, a↑b

f

Version 47
377

Example

• Stack:
– there is a c on the bottom as a marker
– an 'a' in the stack indicates the excess of 'a' over b

thus far read on the input tape
– b in the stack indicates the excess of b over 'a' thus

far read on the input tape

Version 47
378

Example
• Operation:

– transition 1 perform initialization
• puts M in state q and places c on the bottom of the

stack
– in state q, when M reads 'a', M may

• push 'a' onto c (transition 2)
• push 'a' onto another 'a' (transition 3)
• pop b (transition 4)

– when reading a b from the input, M may
• push b onto c (transition 5)
• push b onto another b (transition 6)
• pop 'a' (transition 7)

– transition 8 ends the computation by popping c

Version 47
379

Example

Accepts8ef
4ceq

4bcaq
6bbcaaq
4bcbaaq

6bbcabaaq
Start a stack of b5bcbabaaq
Remove one 'a'7cbbabaaq
Start a stack of 'a'2acbbbabaaq
Bottom marker1cabbbabaaq
Initial configuration-eabbbabaas

CommentsTransitionStackUnread inputState

e

Version 47
380

Example

• Both transitions 2 and 3 pushes 'a' into the stack
(similarly transitions 5 and 6 pushes b) so why not just
use transition ((q, a, e), (q, a)) instead?
– because then M would be non-deterministic
– e.g., at (q, abaa, bc) both ((q, a, b), (q, e)) and

((q, a, e), (q, a)) would be applicable
• the first transition is correct in the given

configuration

Summary

• Pushdown automata
• Configuration
• Yield in one step
• Yield
• String accepted by PDA
• Language accepted by PDA
• State diagram

Version 47
381

Next time
• Pushdown automata and context-free grammars
• Languages that are and are not context-free

Version 47
382

Elements of the Theory of Computation

Lesson 9
3.4. Pushdown automata and context-free grammars

3.5. Languages that are and are not context-free

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com

Last time

• Pushdown automata
• Configuration
• Yield in one step
• Yield
• String accepted by PDA
• Language accepted by PDA
• State diagram

Version 47
383

Pushdown automata and context-free
grammars

• CFG → PDA
• Simplicity
• PDA → CFG
• Closure properties
• Pumping theorem 2

Version 47
384

Version 47
385

CFG → PDA

• Definition of leftmost derivation: such a derivation in which
always the leftmost non-terminal is selected for substitution
– denote with: =>L

– e.g.: R = {S → AB, S → aA, A → a, B → Sb }
S =>L AB =>L aB =>L aSb =>L aABb =>L aaBb =>L

=>L aaSbb =>L aaaAbb =>L aaaabb

Version 47
386

CFG → PDA

• Theorem: for  CFG G = (V, Σ, R, S)  PDA M such that
L(M) = L(G)

• Construction:
– M uses V as the stack symbols
– M mimics the leftmost derivation of G
– M = ({p, q}, Σ, V, Δ, p, {q})

Version 47
387

CFG → PDA

– Δ contains:
• (1) ((p, e, e), (q, S))

– M begins by pushing S (start symbol of G)
– M enters into state q

• (2) ((q, e, A), (q, x)), for  rule A → x  R
– if the topmost symbol, A, on the stack is non-

terminal then it is replaced by the right-hand
side, x, of some rule A → x  R

• (3) ((q, a, a), (q, e)) for  a  Σ
– pops the topmost symbol from the stack

provided that it is a terminal symbol that
matches the next input symbol

Version 47
388

Example

• Give CFG G such that L(G)= {w  {a, b}* : w = xcxR} and
give the equivalent PDA!
– V = {S, a, b, c}
– Σ = {a, b, c}
– R = {S → aSa | bSb | c}
– remark: we have already constructed a PDA for this

language
• let us call the previous PDA "plain" and the current

"constructed"

Version 47
389

Example
– M = ({p, q}, Σ, V, Δ, p, {q}), with

• Δ = {((p, e, e), (q, S)), (T1)
((q, e, S), (q, aSa)), (T2)
((q, e, S), (q, bSb)), (T3)
((q, e, S), (q, c)), (T4)
((q, a, a), (q, e)), (T5)
((q, b, b), (q, e)), (T6)
((q, c, c), (q, e))} (T7)

e S
p q

e↑S↓aSa
e↑S↓bSb
e↑S↓c

c↑c
b↑b
a↑a

R = {S → aSa | bSb | c}
Σ = {a, b, c}

Version 47
390

State Unread Input Stack Transition Used

p abbcbba e -
q abbcbba S T1
q abbcbba aSa T2
q bbcbba Sa T5
q bbcbba bSba T3
q bcbba Sba T6
q bcbba bSbba T3
q cbba Sbba T6
q cbba cbba T4
q bba bba T7
q ba ba T6
q a a T6
q e e T5

• S =>L aSa =>L abSba =>L abbSbba =>L abbcbba

Version 47
391

CFG → PDA

• Lemma: S =>L* wα ↔ (q, w, S) |-* (q, e, α)
– α starts with non-terminal, w  Σ*, α  (V - Σ)V* {e}
– consider the original grammar and the constructed

PDA M, q  F
• Proof: →, induction for the number of steps in the

derivation
– basis step:

• 0 step derivation: S =>L* S → w = e, α = S
• (q, w, S) |-* (q, w, S) by the reflexivity of |-*
• w = e, α = S → (q, w, S) |-* (q, e, α) by the

pervious points

– induction step:
• S =>L* wα →

S = u0 =>L* un = xAβ =>L un+1 = xγβ = wα by the
transitivity of the derivation

– A is the leftmost non-terminal in un, x  Σ*
– A → γ  R

• S =>L* xAβ → (q, x, S) |-* (q, e, Aβ) by the
induction hypothesis, w2 = x, α2 = Aβ

• A → γ  R →  ((q, e, A), (q, γ))  Δ by the
construction, rule type 2

•  ((q, e, A), (q, γ))  Δ → (q, e, Aβ) |- (q, e, γβ) by
the definition of yield in one step

• (q, x, S) |-* (q, e, Aβ), (q, e, Aβ) |- (q, e, γβ) →
(q, x, S) |-* (q, e, γβ) by the transitivity of yield

Version 47
392

transitivity of the derivation

induction hypothesis

construction, rule type 2

definition of yield in one step

transitivity of yield

CFG → PDA

• (q, x, S) |-* (q, e, γβ) → (q, xy, S) |-* (q, y, γβ) by
the end of input theorem

– y can be any string, but we select it such as
w = xy  Σ*

• xγβ = wα (first row), w = xy → xγβ = xyα → γβ = yα
– y is the starting terminal part of γβ

• (q, w, S) |-* (q, y, yα) by the previous two point
• (q, y, yα) |-* (q, e, α) by the construction, rule type 3
• (q, w, S) |-* (q, y, yα), (q, y, yα) |-* (q, e, α) →

(q, w, S) |-* (q, e, α) by the transitivity of yield

Version 47
393

end of input theorem

transitivity of yield

construction, rule type 3

Version 47
394

CFG → PDA

• Proof: if ←, induction for the number of type 2 transitions
– suppose (q, w, S) |-* (q, e, α)
– α starts with non-terminal, w  Σ*, α  (V - Σ)V* {e}
– basis step: 0 type 2 transition

• in (q, w, S) only type 2 transition is applicable
(replacing S) so there can be only 0 total transition

• (q, e, S) |-* (q, e, S) → w = e, α = S
• S =>L* S by the reflexivity of |-*
• S =>L* wα by the previous two points

Version 47
395

– induction step:
• (q, w, S) |-* (q, e, α) →

(q, xy, S) |-* (q, y, Aβ) |- (q, y, γβ) |-* (q, e, α) by the
transitivity of yield

– w = xy  Σ*
– (q, y, Aβ) |- (q, y, γβ) the (n+1)th type 2

transition
–  A → γ  R by the construction

• (q, xy, S) |-* (q, y, Aβ) ↔ (q, x, S) |-* (q, e, Aβ) by
the end of input theorem

CFG → PDA

construction

transitivity of yield

end of input theorem

Version 47
396

• (q, x, S) |-* (q, e, Aβ) ↔ S =>L* xAβ by the
induction hypothesis w2 = x, α2 = Aβ

• A → γ  R → xAβ =>L* xγβ by the
definition of the one step derivation

• (q, y, γβ) |-* (q, e, α) with type 3 transitions (the
type 2 transitions are already used up) →
(q, y, yα) |-* (q, e, α), γβ = yα, y  Σ* by the
construction

• S =>L* xAβ, xAβ =>L* xγβ → S =>L* xγβ by the
transitivity of derivation

• S =>L* xγβ, γβ = yα → S =>L* xyα
• S =>L* xyα, w = xy → S =>L* wα

CFG → PDA

induction hypothesis

definition of the one step derivation

construction

transitivity of derivation

Version 47
397

CFG → PDA

• Proof of the theorem:
– each language generated by a CFG is accepted by

some PDA
– w  L(G) ↔ S =>L* w by the definition of acceptance
– S =>L* w ↔ (q, w, S) |-* (q, e, e) by the lemma with

α = e
– (p, w, e) |- (q, w, S) |-* (q, e, e) ↔ w  L(M) by the

definition of acceptance and the construction of M
• use transition type 1 for the first step
• q  F according to the construction of M

Version 47
398

Simplicity

• Definition of simple PDA: for  ((q, a, β), (p, γ))  Δ
when q is not the starting state → β  Γ, |γ| ≤ 2
– the automaton always change the topmost stack

symbol with e, one, or two other symbols
– "when q is not the start state" condition is important to

start the computation when the stack is empty

Simplicity

• Theorem: for  PDA M(K, Σ, Γ, Δ, s, F)  a simple PDA
M' such that L(M) = L(M')

• Construction:
– M' = (K', Σ, Γ  {Z}, Δ', s', {f'})
– s', f' are new states
– Z is a new stack symbol signaling the bottom of the

stack
– Δ' contains

• ((s', e, e), (s, Z))
• ((f, e, Z), (f', e)),  f  F
• all transitions of Δ (some violate simplicity)

Version 47
399

Version 47
400

Simplicity

– eliminating transitions when more than one stack
symbol is popped

• replace ((q, a, β), (p, γ))  Δ', β = C1C2…Cn

• with:
((q, e, C1), (r1, e)),
((r1, e, C2), (r2, e)),

…
((rn-2, e, Cn-1), (rn-1, e)),
((rn-1, a, Cn), (p, γ))

– r1, r2,…rn-1 are new states
– pop Ci one by one

Version 47
401

Simplicity

– eliminating transitions when more than 1 stack
symbols are pushed

• replace ((q, a, β), (p, γ))  Δ', γ = C1…Cn

• with
((q, a, β), (r1, Cn)),
((r1, e, e), (r2, Cn-1)),…
((rn-2, e, e), (rn-1, C2)),
((rn-1, e, e), (p, C1)),

• r1, … , rn-1 are new state
• push Ci one by one
• simplicity would allow that n = 2

Version 47
402

Simplicity

– eliminating transitions when the topmost stack symbol
is not popped

• replace ((q, a, e), (p, γ))  Δ', q ≠ s'
• with ((q, a, A), (p, γA)),  A  Γ  {Z}

– popping and pushing A before pushing γ
» each potential transition is produced though

probably only some of them is used
– in the previous step we made sure that only 1

stack symbol is pushed (γ), now at most two
can be pushed (γA)

Version 47
403

PDA → CFG

• Theorem: the language of each pushdown automaton is
generated by some context-free language

• Construction :
– let M a PDA and M' the corresponding simple PDA
– we shall construct G(V, Σ, R, S) such that

L(G) = L(M')
– V = S  Σ  <q, A, p>, q, p  K', A  Γ  {e, Z}

• <q, A, p> is a non-terminal representing a portion
of the input string that might be read while M'
moves from state q to state p and the net effect of
the stack is popping A

• lots of these non-terminals will not be used

Version 47
404

– R contains
• S → <s, Z, f'>

– S can be any such string which is read by M'
while moving from s to f' and while the net
effect on the stack is popping Z

– M' contains Z in the stack in state s because
((s', e, e), (s, Z))  Δ'

– M' does not contain Z in the stack in state f'
because ((f, e, Z), (f', e))  Δ',  f  F

PDA → CFG

• <q, B, p> → a<r, C, p> for ((q, a, B), (r, C))  Δ',
for each p  K'

– transition ((q, a, B), (r, C)) has to be simulated
– we know that at state q, there is B at the top of

the stack
» if another symbol is at the top of the stack

then it is handled by another transition
– p is not defined by the transition so we regard

each possibility

Version 47
405

PDA → CFG

PDA → CFG

– left side: string that is read while moving from
state q to p and the net effect is popping B

– right side: 'a' concatenated by a string that is
read while moving from state r to p and the net
effect is popping C

– we arrive to state p in both cases
– the net effect is popping B in both cases

» in the second case B is changed to C first
as ((q, a, B), (r, C)) dictates

– the same string is read in both cases
» the beginning of the string is 'a' as the

transition dictates
Version 47

406

<q, B, p> → a<r, C, p>

PDA → CFG

• <q, B, p> → a<r, C1, p'><p', C2, p>
for ((q, a, B), (r, C1C2))  Δ', for each p, p'  K'

– we handled each potential transition of a simple
PDA

• <q, e, q> → e,  q  K
– while remaining in state q without consulting

the stack nothing is read
– eliminating the extra non-terminals

Version 47
407

• Constructed rules: ..., <q, B, p1> → a<r, C, p1>,
<q, B, p2> → a<r, C, p2>, ...

Version 47
408

Version 47
409

PDA → CFG

• Lemma: q, p  K', A  Γ  {e}, x  Σ*,
(q, x, A) |-M'* (p, e, e) ↔ <q, A, p> =>G* x

• Proof: induction on the length of the derivation of G or
computation of M'

Version 47
410

PDA ↔ CFG

• Theorem: the class of languages accepted by PDA is
exactly the class of languages generated by CFG

• Proof:
– the language of each CFG is accepted by some PDA
– the language of each PDA is generated by some CFG

Version 47
411

Closure properties

• Theorem: context-free languages are closed under union
– the union of such languages which are generated by

two CFGs can be also generated by a CFG
• Construction:

– let G1(V1, Σ1, R1, S1), G2 (V2, Σ2, R2, S2) are known
CFGs

• V1-Σ1, V2-Σ2 are disjoint
– construct G such that L(G) = L(G1)  L(G2)

• V = V1  V2  {S}
• Σ = Σ1  Σ2

• R = R1  R2  {S → S1 | S2}

Version 47
412

Closure properties

• Proof:
– the theorem uses the term closed because the

constructed G is CFG as the two initial grammars
• R1, R2 and the new rules are all CFG rules

– suppose w  L(G1)
• we could have supposed that w  L(G2)
• w  L(G1) ↔ S1 =>G1* w by the definition of

acceptance
• S1 =>G1* w ↔ S1 =>G* w by the construction, R

contains R1

Version 47
413

Closure properties

• S → S1  R by the construction
• S → S1  R ↔ S =>G S1 by the definition of =>G

• S =>G S1, S1 =>G* w ↔ S =>G* w by the transitivity
of =>G*

• S =>G* w ↔ w  L(G) by definition of acceptance

Version 47
414

Closure properties

• Theorem: context-free languages are closed under
concatenation
– the concatenation of such languages which are

generated by two CFGs can can be also generated
by a CFG

• Construction:
– let G1(V1, Σ1, R1, S1), G2(V2, Σ2, R2, S2) are known

CFGs
• V1-Σ1, V2-Σ2 are disjoint

– construct G such that L(G) = L(G1)L(G2)
• V = V1  V2  {S}
• Σ = Σ1  Σ2

• R = R1  R2  {S → S1S2}

Version 47
415

Closure properties

• Proof:
– the theorem uses the term closed because G is CFG

as the two initial grammars
• R1, R2 and the new rules are all CFG rules

– suppose w1  L(G1), w2  L(G2)
• w1  L(G1) ↔ S1 =>G1* w1 by the definition of

acceptance
• w2  L(G2) ↔ S2 =>G2* w2 by the definition of

acceptance
• S1 =>G1* w1, S2 =>G2* w2 ↔ S1 =>G* w1, S2 =>G* w2

by the construction, R contains R1 and R2

Version 47
416

Closure properties

• S → S1S2  R by the construction
• S → S1S2  R ↔ S =>G S1S2 by the definition of

=>G

• S =>G S1S2, S1 =>G* w1, S2 =>G* w2 ↔ S =>G* w1w2
by the transitivity of =>G*

• S =>G* w1w2 ↔ w1w2  L(G) by the definition of
acceptance

Version 47
417

Closure properties

• Theorem: context-free languages are closed under
Kleene star
– the Kleene star of such a language which is

generated by a CFG can be also generated by a CFG
• Construction:

– let G1(V1, Σ1, R1, S1) a known CFG
– construct G such that L(G) = L(G1)*

• V = V1  {S}
• Σ = Σ1

• R = R1  {S → SS1 | e}
– the theorem uses the term closed because G is CFG

as the initial grammar
• R1 and the new rules are all CFG rules

Version 47
418

Closure properties

• Proof:
– suppose w1, ..., wn  L(G1)

• w1  L(G1) ↔ S1 =>G1* w1 by the definition of
acceptance

...
• wn  L(G1) ↔ S1 =>G1* wn by the definition of

acceptance
• S1 =>G1* w1, ..., S1 =>G1* wn ↔

S1 =>G* w1, ..., S1 =>G* wn by the construction, R
contains R1

Version 47
419

Closure properties

• S → SS1 | e  R by the construction
• S → SS1 | e  R ↔ S =>G SS1 =>G * SS1...S1 =>G

S1...S1 by the definition of =>G

• S =>G S1...S1, S1 =>G* w1, ..., S1 =>G* wn ↔
S =>G* w1...wn by the transitivity of =>G*

• S =>G* w1...wn ↔ w1...wn  L(G) by the definition of
acceptance

Version 47
420

Closure properties

• Theorem: the intersection of a context-free language
with a regular language is a context-free language

• Construction:
– L is a context-free language, R is a regular language
–  PDA M1(K1, Σ, Γ1, Δ1, s1, F1) such that L = L(M1)
–  DFA M2(K2, Σ, δ, s2, F2) such that R = L(M2)
– idea: construct PDA M which carries out the

computation of M1 and M2 in parallel and accept w if
both automata would have accepted w

• M works as M1 but also keeps track the state of M2

Version 47
421

Closure properties

– let M(K, Σ, Γ, Δ, s, F)
• K = K1 × K2

• Σ = Σ1  Σ2

• Γ = Γ1

• s = (s1, s2)
• F = F1 × F2

Version 47
422

Closure properties

• Δ is defined by
– (((q1, q2), a, β), ((p1, δ(q2, a)), γ))

» ((q1, a, β), (p1, γ))  Δ1, q2  K2

» the 2nd component of the new state is
determined by δ

– (((q1, q2), e, β), ((p1, q2), γ))
» ((q1, e, β), (p1, γ))  Δ1, q2  K2

» the 2nd component of the new state does not
change if the head does not move

Version 47
423

Pumping theorem 2

• Definition of fanout of CFG G, Φ(G): the largest number
of symbol at the right side of any rule in G
– e.g.: R = {S → AB | a, B → AAA | ab, A → ABBA | e},

Φ(G) = 4
• Parse tree: a graphical way to represent the derivation of

a string
– the inner nodes are non-terminals, the root is S
– the arcs indicate the rules
– the leaves gives the string, it is also called the yield of

the tree
• Theorem: the length of the yield of any parse tree with

height h is at most Φ(G)h

Version 47
424

Pumping theorem 2

Version 47
425

Pumping theorem 2

• Proof by induction on h:
– basis step: h = 1, 1 rule is applied so the maximum

yield is Φ(G)
– induction step:

• the root of a parse tree with height h+1 connects to
at most Φ(G) smaller parse trees with height h

• according to the induction hypothesis the length of
the yield of the smaller parse trees is no more than
Φ(G)h

• the length of the yield of the original parse tree is
Φ(G) * Φ(G)h = Φ(G)h+1

Version 47
426

Pumping theorem 2

• Corollary: the height of the parse tree of w  L(G) where
|w| > Φ(G)n is greater than n
– n can be computed using |w| and Φ(G)
– the greatest n is interesting for us
– e.g. Φ(G) = 4, |w| = 65 → height > 3 = n, 43 = 64

Version 47
427

Pumping theorem 2

• Pumping theorem 2: let G be a CFG, long enough words
in L(G) (|w| > Φ(G)|V-Σ|), has a form, w = uvxyz, v ≠ e,
y ≠ e, such that uvnxynz  L(G),  n ≥ 0

• Proof:
– let w  L(G) such that |w| > Φ(G)|V-Σ| and let T the

parse tree of w with the smallest number of leaves
– according to the previous corollary the height of T is

at least |V-Σ|+1 so the longest path has |V-Σ|+2
nodes

Pumping theorem 2

Version 47
428

Version 47
429

Pumping theorem 2

– only the end of a path can be terminal so the
longest path contains |V-Σ|+1 non-terminal

– the longest path contains at least one non-terminal
twice

• let this non-terminal signed with A
– there is a derivation of w

S =>* uAz =>* uvAyz =>* uvxyz
• where u, v, x, y, z  Σ*, A  V-Σ

Version 47
430

Pumping theorem 2

– there is also a derivation in G: A =>* vAy which can
be repeated several times (including 0) to generate
new strings in L(G)

• the new strings has the form uvnxynz
• S =>* uAz =>* uxz
• S =>* uAz =>* uvAyz =>* uvxyz
• S =>* uAz =>* uvAyz =>* uv2Ay2z =>* uv2xy2z

– if vy = e →  parse tree for w with smaller number of
leaves than T which contradicts the initial
assumption

• if vy can be e → the theorem states nothing

Example

• G = ({S, A, B, a, b}, {a, b}, {S → bBa, A → aB | aa,
B → aAb | bb}, S)
– S => bBa => baAba => baaBba => baabbba
– the theorem does not define u, v, x, y, z only states

their existence
– the string is not long enough (Φ(G)|V-Σ| = 33) but the

derivation contains B twice, thus the theorem holds
anyway

– B =>* aaBb can be repeated
– u = b, v = aa, x = bb, y = b, z = a
– uv0xy0z = bbba, uv1xy1z = baabbba, uv2xy2z =

baaaabbbba, ...
Version 47

431

Version 47
432

Languages that are not context-free

• Theorem: L = {anbncn : n ≥ 0} is not context-free
• Proof by indirection:

– let n > Φ(G)|V-Σ| / 3
– w = anbncn can be written in the form uvxyz, v ≠ e,

y ≠ e
– according to the pumping theorem uvixyiz  L,  i ≥ 0
– if either v or y contains two or three symbols from

{a, b, c} → uv2xy2z contains letters in wrong order
• e.g.: a(ab)2bb(bc)2c

– if both v and y contain one type of symbol from {a, b,
c} → uvixyiz can't contain equal number of 'a', b, c for
some i

• e.g.: a(a)3bb(c)3c

Version 47
433

Closure properties

• The class of context-free languages is not closed under
complementation or intersection
– complementation was applied on DFA

• DFA is equivalent with NFA
• non-deterministic PDA (what we have used) is not

equivalent with a deterministic PDA
– remember that finite automata intersection property

used complementation

Version 47
434

Closure properties

• Theorem: context-free languages are not closed under
intersection

• Proof by indirection:
– suppose context-free languages are closed under

intersection
– L1 = {anbncm: m, n ≥ 0}, L2 = {ambncn: m, n ≥ 0} are

context-free
– according the assumption L1  L2 = {anbncn: n ≥ 0} is

also context free, but we have shown it is not

Version 47
435

Closure properties

• Theorem: context-free languages are not closed under
complementation

• Proof by indirection:
– suppose languages are closed under

complementation
– we have already proved that context-free languages

languages are closed under union
– according to the De'Morgan identity and the previous

two points context-free languages are closed under
intersection which is not

• L1  L2 = (L1
C  L2

C)C

Version 47
436

Languages that are not context-free

• L = {anbmcndm : n ≥ 0} is not context-free
– the subscripts are in a wrong order, you would need

two stacks
• L = {wcw : |w| ≥ 0} is not context-free

– PDA uses stack not queue

Summary

• CFG → PDA
• Simplicity
• PDA → CFG
• Closure properties
• Pumping theorem 2

Version 47
437

Next time

• The definition of a Turing machine

Version 47
438

Elements of the Theory of Computation

Lesson 10
4.1. The definition of a Turing machine

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com

Last time

• CFG → PDA
• Simplicity
• PDA → CFG
• Closure properties
• Pumping theorem 2

Version 47
439

The definition of a Turing machine

• Turing machine, TM
• Configuration
• Yield in one step
• Computation
• Yield
• Machine schema
• The basic machines
• Tape
• Other important machines

Version 47
440

Turing machine, TM

• Alan Turing (1912 –1954)
– English mathematician, logician, cryptanalyst, and

computer scientist
– he was highly influential in the development of

computer science
– providing a formalization of the concepts of

"algorithm" with the Turing machine

Version 47
441

Version 47
442

Turing machine, TM

• We have seen that some language cannot be accepted
by PDA, e.g.:
– L = {anbncn : n≥0}
– L = {an : n is prime}
– L = {w  Σ : w has an equal number of 'a', b and c}

• Let us enhance the PDA to be able accept the previous
languages

Version 47
443

Turing machine

• We will see that TM is the strongest automaton in terms
of computing power
– any computation that can be carried out on a fancier

type of automaton can be also carried out on a TM
• TM is designed to satisfy simultaneously the following

criteria:
– should be automata
– should be simple to define formally and reason about
– should be the strongest in terms of computing power

Version 47
444

Turing machine

• Components of a TM:
– finite-state control unit
– tape, infinite to the right
– head for reading and writing, able to move in both

directions
• Differences between PDA and TM:

– the head of a TM can move to the left
– TM can write on the tape
– TM does not have a stack

• though it can store data in the tape

Turing machine in action

• http://www.youtube.com/watch?v=cYw2ewoO6c4
• http://www.youtube.com/watch?v=E3keLeMwfHY

Version 47
445

Version 47
446

Turing machine

Version 47
447

Turing machine
• Operation of a TM:

– the control unit operates in discrete steps
– each step performs two functions:

• put the control unit in a new state
• either:

– write a new symbol
» may be the same as the old one

– move the head one tape square to the left or to
the right

– if a halting state is encountered then the TM stops
• does not matter if the whole input is read or not
• NFA can go on from final state

Version 47
448

Turing machine

• Special symbols
– ←, → denote the movement of the head

• these symbols are not members of any alphabet
we consider

– ⊳ marks the leftmost end of the tape
• when the head reads a ⊳, it immediately moves to

the right
• ⊳  Σ

– ⊔ marks the blank symbol
• the end of the tape is filled with ⊔
• ⊔  Σ

Version 47
449

Turing machine

• Definition of Turing machine M: a quintuple
(K, Σ, δ, s, H), where
– K set of states (finite)
– Σ alphabet (finite)

• containing ⊔, ⊳, not containing ←, →
– s  K the initial state
– H  K the set of halting states (finite)

• some say there is only one halting state
– δ transition function, (K - H) × Σ → K × (Σ  {←, →})

such that
•  q  K - H, if δ(q, ⊳) = (p, b) → b = →
•  q  K - H, a  Σ, if δ(q, a) = (p, b) → b ≠ ⊳

Version 47
450

Turing machine

• TM is deterministic
• TM stops only when the machine enters a halting state
• ⊳ appears only at the left end of the tape

– it is never erased
– TM never writes ⊳

Version 47
451

Example

• Create TM M which changes all 'a' to ⊔ as it goes to the
right, until it finds a tape square already containing ⊔!
– changing a nonblank symbol to the blank symbol is

called erasing
– M = (K, Σ, δ, s, {h}), where

• K = {q0, q1, h}
• Σ = {a, ⊔ , ⊳}
• s = q0

• δ is given by the following table

Version 47
452

Example

q  δ(q, )
q0 a (q1,⊔)

q0 ⊔ (h, ⊔)
q0 ⊳ (q0, →)
q1 a (q0, a)
q1 ⊔ (q0, →)
q1 ⊳ (q1, →)

• Notice that in state q1 the input symbol is always blank
nonetheless δ(q1, a) must be defined as the domain of δ
is (K - H) × Σ

Version 47
453

Example

• Create TM M which scans to the left until it finds ⊔, if
starts from ⊔ then halt at once!
– M = (K, Σ, δ, s, H), where

• K = {q0, h}
• Σ = {a, ⊔, ⊳}
• s = q0

• H = {h}
• δ is given by the following table

Example

• Unlike the previous automata, M may never stops
– it happens if there is no ⊔ to the left
– in that case the head goes back and forth between

the first and second symbol of the tape

Version 47
454

q  δ(q, )

q0 a (q0, ←)

q0 ⊔ (h, ⊔)

q0 ⊳ (q0, →)

Version 47
455

Configuration

• Definition of a configuration of TM M = (K, Σ, δ, s, H): an
ordered triple of the current state of M and the whole
tape
– the tape is partitioned into 2 parts

• until the head (including the head)
• after the head

– it is an element of K × ⊳Σ* × (Σ*(Σ - {⊔})  {e})
• the head position is defined by the second and

third components

Version 47
456

Configuration

– the description of the tape always starts with ⊳ and
never ends with ⊔

• (q, ⊳baa, bc⊔), (q, ⊔aa, ba) are not valid
configurations

– the last character of the second element of the
configuration is the head position

• e.g.: (q, ⊳a, aba), (h, ⊳⊔⊔⊔, ⊔a), (q, ⊳⊔a⊔b, e) the
head is on 'a', ⊔, b respectively

Version 47
457

Configuration

– the second and third component of the configuration
may be merged then the head position is marked with
underline

• (q, wa, u) = (q, wau)
• (q, ⊳⊔a⊔⊔, e) = (q, ⊳⊔a⊔⊔)

– halted configuration: such configuration in which the
state component is in H

– some partitions the tape into 3 parts: before the head,
under the head, after the head

Version 47
458

Yield in one step

• Definition of yield in one step of a TM, |-M: a relation
between two "neighboring" configurations
– let

• M = (K, Σ, δ, s, H) be a Turing machine
• (q1, w1a1u1), (q2, w2a2u2) are configurations of M,

a1, a2  Σ
– then (q1, w1a1u1) |-M (q2, w2a2u2) if and only if

Version 47
459

Yield in one step

–  δ(q1, a1) = (q2, b), b  Σ  {←, →}, and one of the
following holds:

• b  Σ, w1 = w2, u1 = u2, a2 = b
• b = ←, w1 = w2a2, either

– u2 = a1u1, if (a1 = ⊔, u1 = e)C or
– u2 = e, if a1 = ⊔, u1 = e

• b = → , w2 = w1a1, either
– u1 = a2u2, if u1 ≠ e
– u1 = u2 = e, a2 = ⊔, if u1 = e

(q1, w1a1u1) |-M (q2, w2a2u2)

Version 47
460

Yield in one step

• Let a  Σ, w, u  Σ*, u does not end with ⊔; the yield in
one step relation may hold between two configurations if
– M rewrites a symbol without moving its head

• b  Σ, w1 = w2, u1 = u2, a2 = b
• δ(q1, c) = (q2, d), a1 = 'c', b = 'd'
• e.g.: (q1, ⊳acdacdcca) |-M (q2, ⊳acdaddcca)

Version 47
461

– M moves its head one square to the left
• b = ←, w1 = w2a2, either

– u2 = a1u1, if (a1 = ⊔, u1 = e)C is true, or
– u2 = e, if a1 = ⊔, u1 = e

• δ(q1, c) = (q2, ←)
• e.g.: (q1, ⊳acdacdcca) |-M (q2, ⊳acdacdcca)
• w2a2u2 can be shorter than w1a1u1

– e.g.: (q1, ⊳acdacdcca⊔) |-M (q2, ⊳acdacdcca)

Version 47
462

– M moves its head one square to the right
• b = → , w2 = w1a1, either

– u1 = a2u2, if u1 ≠ e
– u1 = u2 = e, a2 = ⊔, if u1 = e

• δ(q1, a) = (q2, →)
• e.g.: (q1, ⊳acdacdcca) |-M (q2, ⊳acdacdcca)
• w2a2u2 can be longer than w1a1u1

– e.g.: (q1, ⊳acdacdcca) |-M (q2, ⊳acdacdcca⊔)

Version 47
463

Computation

• Definition of computation by TM M: a sequence of
configuration C0, C1, ... Cn such that C0 |- C1 |- ... |- Cn

– e.g.: (q1, ⊳abaa) |- (q2, ⊳bbaa) |- (q1, ⊳bbaa) |-
(q3, ⊳baaa)

– the length of a computation is the number of yield in
one step operation applied

– the first and the last configuration can be connected
with the yield in n steps relation, denoted as |-n

• e.g.: (q1, ⊳abaa) |-3 (q3, ⊳baaa)

Version 47
464

Yield

• Definition of yield of a TM, |-M*: the reflexive, transitive
closure of |-M

– if (q', w', u') can be reached from (q, w, u) through a
number of yield in one step operation then the yield
operation holds between (q, w, u) and (q', w', u')

– denote as: (q, w, u) |-* (q', w', u')

Version 47
465

Example

• Consider again TM M which changes all 'a' to ⊔ as it
goes to the right, until it finds a tape square already
containing ⊔!
– (q1, ⊳⊔aaaa), (q0, ⊳⊔aaaa), (q1, ⊳⊔⊔aaa),

(q0, ⊳⊔⊔aaa), (q1, ⊳⊔⊔⊔aa) is a computation of
length 4

– (q1, ⊳⊔aaaa) |-* (q1, ⊳⊔⊔aaa)
– (q1, ⊳⊔aaaa) |-3 (q0, ⊳⊔⊔aaa)
– (q1, ⊳⊔aaaa) |-5 (q1, ⊳⊔⊔⊔aa)
– (q1, ⊳⊔aaaa) |-2 (q0, ⊳⊔aaaa)

Version 47
466

Machine schema

• Defining TM as a quintuple is cumbersome and hard to
understand
– the table of the transition function is usually big

• A machine schema is such a TM which is constructed
using already defined TMs as building blocks

• The notation is similar to the state diagram but instead of
states the already defined TMs appear as nodes
– the arrows connecting the sub-TMs tell which sub-TM

is to start after the current one stopped

Version 47
467

The basic machines

• Symbol writing and head moving machines:
– for each a  Σ  {→, ←} – {⊳}, we define TM

Ma = ({s, h}, Σ, δ, s, {h})
–  b  Σ - {⊳}, δ(s, b) = (h, a)

• but δ(s, ⊳) = (s, →)
– symbol writing machine if a  Σ
– head moving machine if a  {→, ←}
– these machines perform one step and halt

• except M← if it started from the second head
position, right after ⊳

– shorthand: Ma = a, M← = L, M→ = R

The basic machines, a

Version 47
468

q  δ(q, )

s a (h, a)

s b (h, a)

s c (h, a)

s ⊔ (h, a)
s ⊳ (h, →)

The basic machines, b

Version 47
469

q  δ(q, )

s a (h, b)

s b (h, b)

s c (h, b)

s ⊔ (h, b)
s ⊳ (h, →)

The basic machines, c

Version 47
470

q  δ(q, )

s a (h, c)

s b (h, c)

s c (h, c)

s ⊔ (h, c)
s ⊳ (h, →)

The basic machines, L

Version 47
471

q  δ(q, )

s a (h, ←)

s b (h, ←)

s c (h, ←)

s ⊔ (h, ←)
s ⊳ (h, →)

The basic machines, R

Version 47
472

q  δ(q, )

s a (h, →)

s b (h, →)

s c (h, →)

s ⊔ (h, →)
s ⊳ (h, →)

Version 47
473

Example

• Operation of M:
– start at M1, operate as M1 would until M1 would halt

• if the currently scanned symbol is 'a', initiate M2
and operate as M2 would operate

• if the currently scanned symbol is b, initiate M3 and
operate as M3 would operate

• if the currently scanned symbol is neither 'a' nor b
then halt

– if M2 or M3 would halt then M halt
M1

a

b

M2

M3

Version 47
474

Machine schema

• Definition of machine schema: a triplet M = (m, η, Ms),
where
– m set of TMs (finite)

• common alphabet Σ and disjoint sets of states
• m = {M1, M2, ..., Mn}

– Mi = (Ki, Σ, δi, si, Hi)
– η  m × Σ × m, defines the next TM
– Ms  m, starting TM

Version 47
475

Machine schema

• M = (m, η, Ms) = (K, Σ, δ, s, H)
– K = K0 ...  Kn  {r0, r1, …, rn, h}

• r0, r1, …, rn are new states
• |m| = n

– s = ss

– H = {h}
• h is a new state

Version 47
476

Machine schema

– δ
• when imitating Mi

– if q  Ki, a  Σ, δi(q, a) = (p, b), p  Hi

– then δ(q, a) = (p, b)
• instead of halting Mi we go to a new state

– if q  Ki, a  Σ, δi(q, a) = (p, b), p  Hi

– then δ(q, a) = (ri, b)
» reading the last symbol of what Mi would

have read

Version 47
477

Machine schema

• if η don't define a new TM then M halts
– if ri K (ri is a new state), a  Σ, (Mi, a) is not

defined
– then δ(ri, a) = (h, a)

• if η defines a new TM then M starts to imitate it
– if ri K (ri is a new state), a  Σ, (Mi, a) = Mj,

δj(sj, a) = (p, b)
– then (sj is skipped because ri acted as sj)

» δ(ri, a) = (p, b) if p  Hj

» δ(ri, a) = (rj, b) if p  Hj

Version 47
478

Machine schema

Version 47
479

Example

• R⊔ = ({R}, , R) is a machine schema
– R = ({q, h}, Σ, δR, q, {h})

• δR(q, a) = (h, R), for  a  Σ
– η(R, a) = R, η(R, b) = R,

η(R, ⊔) = undefined
• R⊔ = ({q, r0, h}, Σ, δ, q, {h}) is a TM

– r0 is the new state
– δ(q, a) = (r0, R) for a  Σ (b rule)
– δ(r0, a) = (r0, R) if a ≠ ⊔ (d2 rule)

(h, a) if a = ⊔ (c rule)

R

a, b

Version 47
480

Tape

• When a schema transfer control from one TM to another
the content of the tape and the position of the head does
not change

• Standard form of a tape: the head is after the rightmost
non-blank symbol
– e.g.: ⊔w⊔ where w  (Σ - ⊔)*

Version 47
481

Tape

• At constructing machine schema it is useful to leave the
tape in a standard form so another schema may assume
that it can start from this standard form
– not all machine apply this convention

• Definition of the initial configuration of TM M on input
w  (Σ - {⊔, ⊳})*: (s, ⊳⊔w)

Version 47
482

Example

• Construct a machine schema which moves the head to
the right by 2 squares!
– the schema moves its head right one square then if

that square contains an 'a', b, ⊳, or ⊔, it moves its
head one square further to the right

Version 47
483

Example

• An arrow labeled with several symbols is the same as
several parallel arrows

• If an arrow is labeled by all symbols in the alphabet Σ,
then the labels can be omitted, so M can be signed as
– >R → R
– >RR
– >R2

Version 47
484

Example

• Construct a machine schema that scans its tape to the
right until it finds a blank!
– denote this machine by R⊔

– we can eliminate multiple arrows and labels by using
label x ≠ ⊔ (x is not the letter 'x' but the currently read
letter)

Version 47
485

Example

• Construct a machine schema that scans its tape to the
left until it finds a blank!
– denote this machine by L⊔

– this TM never stops if there is no ⊔ to the left

Version 47
486

Copy machine

• Construct a machine schema that copies a string not
containing ⊔!
– denote this machine by C
– C transforms ⊔w⊔ into ⊔w⊔w⊔, ⊔  w

• other strings may precede w
• blank denotes the beginning of the string

Version 47
487

c

⊔R
⊔ 2cL⊔ 2c

a

⊔R
⊔

2 aL
⊔

2 a

Version 47
488

Copy machine

– remember that C has several loop
• in each loop there is concrete symbol writing

machine instead of x

Version 47
489

Copy machine

⊔abc⊔ ⊔abc⊔a ⊔ab⊔⊔ab⊔
⊔abc⊔ ⊔a⊔c⊔a ⊔ab⊔⊔ab⊔
⊔abc⊔ ⊔a⊔c⊔a ⊔ab⊔⊔abc
⊔⊔bc⊔ ⊔a⊔c⊔a⊔ ⊔ab⊔⊔abc
⊔⊔bc⊔ ⊔a⊔c⊔ab ⊔ab⊔⊔abc
⊔⊔bc⊔⊔ ⊔a⊔c⊔ab ⊔abc⊔abc
⊔⊔bc⊔a ⊔a⊔c⊔ab ⊔abc⊔abc
⊔⊔bc⊔a ⊔abc⊔ab ⊔abc⊔abc⊔
⊔⊔bc⊔a ⊔abc⊔ab
⊔abc⊔a ⊔ab⊔⊔ab

Version 47
490

Example

• Construct a machine schema that shift a string not
containing ⊔ to the right!
– denote this machine by S→

– S→ transforms ⊔w⊔ into ⊔⊔w⊔, ⊔  w
• other strings may precede w
• blank denotes the beginning of the string

Version 47
491

Example

• Construct a machine schema that deletes a string (not
containing ⊔)!
– D transforms ⊔w⊔ into ⊔, ⊔  w

Version 47
492

Other important machines

• S← shift a string to the left
• La find the first occurrence of 'a' to the left
• Ra find the first occurrence of 'a' to the right

Summary

• Turing machine, TM
• Configuration
• Yield in one step
• Computation, Yield
• Machine schema
• The basic machines, Tape
• Other important machines

Version 47
493

Next time
• Computing with Turing machines

Version 47
494

Elements of the Theory of Computation

Lesson 11
4.2. Computing with Turing machines

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com

Last time

• Turing machine, TM
• Configuration
• Yield in one step
• Computation
• Yield
• Machine schema
• The basic machines
• Tape
• Other important machines

Version 47
495

Computing with Turing machines

• Turing computable function
• Representation of numbers with strings
• String accepted by TM
• Language accepted by TM
• Turing acceptable
• Turing decidable
• Algorithm

Version 47
496

Version 47
497

Turing computable function

• Definition of the output of TM M on input w, M(w):
if (s, ⊳⊔w) |-* (h, ⊳⊔y) → M(w) = y
– Σ0  Σ – {⊔, ⊳}, w, y  Σ0*, h  H
– M(w) is defined only if M halts on input w

• it is supposed that M leaves the tape in a specified
format

• M(w) =  if M fails to halt on input w
– the output of DFA, NFA, and PDA was binary, they

halted or not

Version 47
498

Turing computable function

• Definition of Turing computable function, f: Σ0* → Σ0*:
 TM M such that M(w) = f(w),  w  Σ0*
– if M is started with input w, then when it halts, its tape

contains f(w)
– we say that M computes f
– a Turing computable function is also called recursive

function

Version 47
499

Turing computable function

• Is κ Turing computable? If it is, give the TM which
computes it!
– κ: Σ* → Σ*, κ(w) = ww
– κ is computed by R⊔CS←

• position the head: ⊳⊔w → ⊳⊔w⊔
• copy the string: ⊳⊔w⊔ → ⊳⊔w⊔w⊔
• shift the copied string: ⊳⊔w⊔w⊔ → ⊳⊔ww⊔

Version 47
500

Representation of numbers with strings

• Unary representation
– one type of symbol is used to describe any number
– numUni: {I}* → N, numUni(In) = n

• e.g.: numUni(III) = numUni(I3) = 3
• Binary representation

– numBin: 0  1{1, 0}* → N,
numBin(a1a2...an) = a12n-1+ a22n-2+...+ an

• e.g.: numBin(110) = 1*4+1*2+0 = 6

Version 47
501

Turing computable function

• Definition of Turing computable function, f: Nk → N:  TM
M such that  w1,…,wk  Σ*,
num(M(w1;…;wk)) = f(num(w1), …, num(wk))
– e.g.: num(Madd("5"; "3")) = add(num("5"), num("3"))
– if M is started with the representations of the integers

n1,…,nk as input, then when it halts, its tape contains
a string that represents number f(n1 ,…, nk)

– we say that M computes f
– a Turing computable function is also called recursive

function

Version 47
502

Example

• Is succ Turing computable? If it is, give the TM which
computes it!
– succ: N → N, succ(n) = n + 1

Version 47
503

Example

• Operation:
– M finds the right end of the input
– goes to the left as long as it sees 1, changing all of

them to 0
– when M sees a 0, it changes it into 1, goes to the right

and halts
– if M sees ⊔ while looking for 0 then it shifts the whole

string one position to the right, writes 1 at the left end,
goes to the right end, and halts

Version 47
504

String accepted by TM

• Definition of string accepted by TM: w  Σ* is accepted
by M if (s, ⊳⊔w) |-* (h, x, y), w  Σ0*, h  H
– w is accepted if M the computation halts
– w is rejected if M the computation never halts

• e.g.: M is in an infinite loop
– Σ0  Σ – {⊔, ⊳}
– the value of x and y is unimportant

Version 47
505

Language accepted by TM

• Definition of language accepted by TM M, L(M):
L(M) = {w  Σ0* : (s, ⊳⊔w) |-* (h, x, y), w  Σ0*, h  H}
– the set of strings accepted by M
– Σ0  Σ – {⊔, ⊳}

Version 47
506

Turing acceptable

• Definition of Turing acceptable language, L:  TM M
such that L = L(M)
– we say M accepts or semi-decides L
– a Turing acceptable language is also called

recursively enumerable
– M halts for  w  L, M(w) =  for  w  L

Version 47
507

Example

• Is L Turing acceptable? If it is, give the TM which
accepts it!
– L = {w  {a, b}* : w contains at least one 'a'}

• Operation:
– M scans right until 'a' is encountered and then halts
– if no 'a' is found, the machine goes on forever into

blanks that follow its input

Version 47
508

Turing decidable

• Definition of Turing decidable language, L:  TM M such
that
 w  L, (s, ⊳⊔w) |-* (h, ⊳⊔Y⊔),
 w  L, (s, ⊳⊔w) |-* (h, ⊳⊔N⊔), h  H
– Y and N are new symbols
– we say M decides L
– M always halts, L(M) = Σ*
– a Turing decidable language is also called recursive

Version 47
509

Turing decidable

• Turing decidable can be also defined by introducing two
new halting states: y, n
– accepting configuration: its halting state is y

• M accepts w if the initial configuration yields an
accepting configuration

– rejecting configuration: its halting state is n
• M rejects w if the initial configuration yields a

rejecting configuration
– M decides a language L if for  w  Σ0*

• if w  L then M accepts w
• if w ∉ L then M rejects w

Version 47
510

Characteristic function

• Definition of the characteristic function, χL of language L:
χL(w) = Y if w  L, χL(w) = N otherwise
– Σ0  Σ – {⊔, ⊳}, L  Σ0*
– χL: Σ0*→ {Y, N}

• χL - Greek chi
• Y, N  Σ0

– e.g.: χ{aa, bb, cc}(aa) = Y, χ{aa, bb, cc}(ab) = N
• Theorem: a Turing machine with 2 or more tapes is

equivalent with a simple Turing machine

Version 47
511

Turing decidable

• Theorem: L is Turing decidable ↔ χL Turing computable
• Proof:

– if L is decided by M (which is w  L → M(w) = Y)
– then χL(w) = Y, so the same M computes χL (which is

M(w) = χL(w))
• Theorem: f: Σ0* → Σ0* is Turing computable ↔

Lf = { x,f(x) : x  Σ0*} is Turing decidable
– e.g.: f = plus1, Lplus1 = { "0,1", "1,2", "2,3", ...}

Version 47
512

Turing decidable

• Proof: →, example
– Lf = {opposite pairs, e.g.: black-white, good-bad, ...}
– Adam can give you the opposite for a given word
– Bell can decide if a pair, e.g., boy-tablet, is in Lf in the

following way
• she asks Adam about the opposite of boy, it is girl
• girl is not tablet, so boy-tablet is not in Lf

f is Turing computable ↔ Lf is Turing decidable

Version 47
513

Turing decidable

• Proof: →
– suppose M computes f
– M' (a 2-tape TM) decides Lf in the following way

• search for ',' on the tape 1, T1: x,z, T2: e
• move z to tape 2, T1: x, T2: z
• simulate M on tape 1, T1: M(x), T2: z

– M(x) = f(x) because M computes f
• compare tape 1 and 2, (f(x) and z), write Y if they

match, write N otherwise

f is Turing computable ↔ Lf is Turing decidable

Version 47
514

• Proof: ←, example
– idea: all possible output is considered so M' will halt

eventually
– Lf = {w-wR, e.g., ba-ab, baa-aab, ...}
– Bell can decide if a pair is in L
– Adam can compute the reverse of a word, e.g., ab, in

the following way
• Adam systematically asks Bell about each

potential pair, where the first component is given,
e.g., ab-e, ab-a, ab-b, ab-aa, ab-ab, ab-ba

Turing decidable

f is Turing computable ↔ Lf is Turing decidable

Version 47
515

• Proof: ←
– suppose M decides Lf

– M' (a 3-tape TM) computes f in the following way
• write w to T2 (original w, never changes)
• initialize T3 with e (the result possibilities)
• copy T2 ◦ , ◦ T3 to T1 (the work tape)
• simulate M on T1
• if M says Y → copy T3 to T1 and halt
• T3 := lexicographically next string of T3

– e, a, b, aa, ab, bb, aaa, ...
• go back to give new value to T1

Turing decidable

f is Turing computable ↔ Lf is Turing decidable

Turing decidable

• For each language L there is an equivalent function χL

• For each function f there is an equivalent language
{x,f(x)}

• Corollary: Turing computable functions and Turing
decidable languages are equivalent
– recursive functions and recursive languages are

equivalent
– functions are an alternative way to describe

languages (see µ-recursive functions)

Version 47
516

Version 47
517

Example

• Construct a machine schema that decides
L = {anbncn : n ≥ 0}!
– we proved that L is not context-free

Version 47
518

Example

Version 47
519

Example

• Operation:
– on input anbncn it will operate in n stages
– in each stage

• M starts from the left end of the string
• moves to the right in search of 'a'
• when it finds 'a', it replaces it by z
• looks further to the right for b
• when it finds b, it replaces it by z
• looks further to the right for c
• when it finds c, it replaces it by z
• returns to the left end of the input

Version 47
520

Example

• Operation:
– if at any point the machine schema does not find the

proper symbol then delete the input and write N to the
tape

• e.g.: if M finds b when looking for 'a' → there is
more b than 'a'

• It is easy to construct such a TM which accepts
L = {anbncndn : n ≥ 0}

Version 47
521

Algorithm

• Description of algorithm: a finite set of well-defined
instructions for accomplishing some task which will
terminate after a final number of steps
– there is no formal definition

• TM M that accepts a language L cannot be usefully
employed for telling whether w is in L
– reason: if w ∉ L → we will never know when we have

waited enough for an answer
– M is not a representation of an algorithm

• TM M that decides a language L can be perceived as an
algorithm

Version 47
522

Turing decidable languages

• Theorem: if language L is Turing decidable → L is Turing
acceptable

• Proof:
– TM M decides L
– the machine schema below accepts L
– if M results in ⊳⊔Y⊔ → the schema halts
– if M results in ⊳⊔N⊔ → the schema does not halt

Version 47
523

Turing decidable languages

• Theorem: if language L is Turing decidable ↔ LC is
Turing decidable

• Proof:
– TM M decides L
– the machine schema below decides LC

– if M results in ⊳⊔Y⊔ → the schema results ⊳⊔N⊔
– if M results in ⊳⊔N⊔ → the schema results ⊳⊔Y⊔

Version 47
524

Turing decidable languages

• Theorem: if both L and LC are Turing acceptable ↔ L is
Turing decidable

• Proof:
– →

• TM M1 accepts L, M2 accepts LC

• construct a 2-tape TM which simulates M1 on tape
1 and M2 on tape 2 in parallel

– execute one step of M1 then one step of M2,
and so on (time sharing)

– if M1 is to performed fully first and the input is in
LC → M1 never stops, so this is a wrong
strategy

Version 47
525

Turing decidable languages

• Proof:
– →

• if M1 halts, write ⊔Y⊔ to the tape and halt
• if M2 halts, write ⊔N⊔ to the tape and halt

– ←
• if L Turing decidable → L Turing acceptable
• if L Turing decidable → LC Turing decidable
• if LC Turing decidable → LC Turing acceptable

Summary

• Turing computable function
• Representation of numbers with strings
• String accepted by TM
• Language accepted by TM
• Turing acceptable, decidable

Version 47
526

Next time
• The Church-Turing thesis
• Universal Turing machines
• The halting problem

Version 47
527

Element of the Theory of Computation

Lesson 12
5.1. The Church-Turing thesis

5.2. Universal Turing machines
5.3. The halting problem

University of Pannonia
Dr. István Heckl, Istvan.Heckl@gmail.com

Last time

• Turing computable function
• Representation of numbers with strings
• String accepted by TM
• Language accepted by TM
• Turing acceptable
• Turing decidable
• Algorithm

Version 47
528

TM

• The Church-Turing thesis
• Universal TM
• Unary encoding
• Binary encoding
• The halting problem

Version 47
529

Version 47
530

The Church-Turing thesis

• By keeping extending the language acceptors we have
reached the TM
– we have demonstrated the wide range of tasks

solvable by TM
– several enchantment (multiple tape, random access

memory, non-deterministic behavior) do not increase
the computational capability of the TM

Version 47
531

The Church-Turing thesis

• By keeping extending the language generators the
unrestricted grammars can be reached

• µ-recursive functions is also a representation of
languages
– µ-recursive functions, TMs, and unrestricted

grammars are equivalent

Version 47
532

The Church-Turing thesis

• Church-Turing thesis: any algorithm can be performed
by a TM provided that sufficient time and storage space
are available
– it is a thesis and not a theorem because TM is a

mathematical concept but algorithm is not
• it cannot be proved
• could be disproved by introducing such a

reasonable machine which is capable to solve
such problems which cannot be done with TM

Version 47
533

The Church-Turing thesis

• We regard something as algorithm if it can be
represented by such TMs which halt on every input
– TMs accepting languages cannot be regarded as

algorithms
• they do not halt on every input

Version 47
534

The Church-Turing thesis

• We have shown previously that there are uncountable
languages but only countably infinite representation
– not every language can be represented
– deciding if w is such a language is an unsolvable

problem

Version 47
535

The Church-Turing thesis

• The cardinality argument (there are countably infinite
language representation but uncountable languages)
proves only the existence of unsolvable problems
– finding an actual unsolvable problem is our current

aim

Version 47
536

Universal TM

• TM cannot be programmed
– its program is hardwired into the transition function

• Definition of universal TM, U: such a TM which is
capable of simulating any TM
– U can be programmed as any computer
– the program and the input of the program can be

given on the tape of U
– U is still a TM

Version 47
537

Universal TM

• The program of U is the encoding of a TM
– hardware and software are equivalent (Neumann

principle)
– ρ(M) the encoding of TM M (rho of M)
– ρ(w) the encoding of string w

• U(ρ(M)ρ(w)) = ρ(M(w))
– U gives the same result in encoded form what its

program (M) would give processing the program's
input (w)

– beware: M's input is w, U's input is the encoded form
of M and w

Version 47
538

Unary encoding

• If TM M = (K, Σ, δ, s) →
ρ(M) = cS0cSq1,a1Sq1,a2 ... Sq1,a|Σ|Sq2,a1Sq2,a2 ... Sq|K|,a|Σ|

– S0 encodes the initial state, S0 = λ(s)
– Sqp,ar encodes values of the transition function

δ(qp, ar) = (qp', ar')
• Sqp,ar = cw1cw2cw3cw4, where

– w1 = λ(qp)
– w2 = λ(ar)
– w3 = λ(qp')
– w4 = λ(ar')

• The encoding of string w = b1b2 ... bn:
ρ(w) = cλ(b1)cλ(b2)c ... cλ(bn)c

q  δ(q, )
q1 a (q0, ←)
q1 ⊔ (h, ⊔)
q1 ⊳ (q0, →)
q2 a (q1, →)
...

Version 47
539

Unary encoding

• Encoding of the alphabet and states of the program:
– to decide what I3 does mean, its position must be

checked
• at w1, w3 it is q2

• at w2, w4 it is a1

states

alphabet

σ λ(σ)

h

L

R

ai

qi

I

II

I

Ii+2

Ii+1

Version 47
540

Unary encoding

• Example:
– M = {K, Σ, δ, s, {h}}

• K = {h, q2}
• Σ = {a1, a3, a6}
• s = q2 ↔ III
• transition function

– δ(q2, a1) = (h, a3) ↔ cIIIcIIIcIcIIIIIc
– δ(q2, a3) = (q2, R) ↔ cIIIcIIIIIcIIIcIIc
– δ(q2, a6) = (q2, R) ↔ cIIIcIIIIIIIIcIIIcIIc

– ρ(M) = cI3ccI3cI3cIcI5ccI3cI5cI3cI2ccI3cI8cI3cI2cc
• cc signals the start of some Sqp,ar

states

alphabet

σ λ(σ)

h

L

R

ai

qi

I

II

I

Ii+2

Ii+1

Version 47
541

Unary encoding

• In the example Σ is not {a1, a2, a3}, why?
– suppose a machine schema is to be executed by U
– each TM of the schema may have different Σ
– U has to represent every possible character

• create the union of all Σ and number the elements
• create new indices to the elements
• these new indices are used

Version 47
542

Unary encoding

• In general, U can execute any TM so it has to represent
every possible character
– the Σ of U still {c, I}

• λ is the unary encoding
• Similar argument holds for K

Version 47
543

Binary encoding

• If TM M = (K, Σ, δ, s, H) →
ρ(M) = Sq1,a1Sq1,a2 ... Sq1,a|Σ|Sq2,a1Sq2,a2 ... Sq|K|,a|Σ|

–  i, j  N such that, 2i > |K|, 2j > |Σ|
– Sqp,ar encodes values of the transition function

δ(qp, ar) = (qp', ar')
• Sp,r = (w1,w2,w3,w4) where

– w1 = λ(qp)
– w2 = λ(ar)
– w3 = λ(qp')
– w4 = λ(ar')

Version 47
544

Binary encoding

• Encoding of the alphabet and states of the program:
– qk qnumBin(k)

• q followed by a binary number of length i
• the actual encoding is not given here
• the start state is always q0i

– ⊔ a0j

– ⊳ a0j-11
– ← a0j-110
– → a0j-111
– ak anumBin(k+3)

• 'a' followed by a binary number of length j

Version 47
545

• Example:
– consider TM M = (K, Σ, δ, s, {h})

• K = {s, q, h}, Σ = {⊔, ⊳, a}
• δ and the state, symbol encoding are given in

these tables (i = 2, j = 3)

s

q

h

state/
symbol

represen-
tation

a

⊳

→

→

q00

q01

011

a000

a001

a010

a100

a011

П

Binary encoding

Version 47
546

Universal TM

• U is implemented with a 3-tape TM
– tape 1: encoding of the tape of TM M to be simulated

• initially: ρ(w), the input of the algorithm
– tape 2: encoding of the TM M to be simulated

• ρ(M) is the program
– tape 3: encoding of the current state of TM M during

the simulation

Version 47
547

Universal TM
• Operation:

– initially the input of U, ρ(M)ρ(w), is on the tape 1
– ρ(M) is copied to the tape 2, ρ(w) is shifted to the left
– the starting state is written onto tape 3
– head 1 moves in accordance with the head of M

• initially it is on the 2nd square where the encoding
of the 1st symbol of w starts

– head 2 searches for such a transition which
corresponds to the actual simulated state and the
actual scanned simulated symbol

– according to the transition either the scanned
simulated symbol is changed or head 1 is moved

Universal TM

Version 47
548

Version 47
549

The halting problem

• Remember the diagonalization principle
– the complement of the diagonal differs from each row

• Some seemingly correct definition can be contradictory
– e.g.: (Bob) the barber cuts the beard for those people

(condition:) who does not do it for himself
• Adam cuts his own beard so Bod does not do it
• Clarence does not cut his own beard so Bob cuts it

Version 47
550

The halting problem

– does Bob cut his own beard?
• suppose no: the condition is true for Bob, thus, the

barber cuts his beard according to the definition,
contradiction is reached

• suppose yes: the condition is false for Bob, thus,
the barer does not cut his beard according to the
definition of barber, contradiction is reached

• The set of people whose beard is cut by Bob
– the above definition is contradictory
– a mathematical system is either incomplete or

contradictory

Version 47
551

The halting problem

• halts(P, X): such a program which returns yes if the
program P would stop on input X, otherwise it returns no
– halts(P, X) always stops
– halts(P, X) would be very useful for debuging

• Theorem: halts(P, X) does not exist
– function "halts" is not Turing computable

• Proof by indirection:
– assume halts(P, X) does exist

Version 47
552

The halting problem

– construct diagonal(X)
• such a program which loops forever if program X

would stop on input X, otherwise it stops
diagonal(X)

a: if halts(X, X) then goto a:

else stop

– let X = diagonal
• start diagonal(diagonal)
• will diagonal(diagonal) stop?

Version 47
553

The halting problem

• if halts(diagonal, diagonal) = true →
– diagonal does not stop because the goto

statement loops forever
– diagonal stops according to the definition of

halts(P, X)
• if halts(diagonal, diagonal) = false→

– diagonal stops in the else branch
– diagonal does not stop according to the

definition of halts(P, X)
– contradiction reached in both cases, so, halts(P, X)

does not exist

Version 47
554

The halting problem

• Theorem: language H corresponding to halts(P, X) is not
Turing decidable
– H = {ρ(M)ρ(w) : TM M halts on input w}

• H contains strings with two components, the first is
the encoding of a program, the second is the
encoding of its input, moreover the program halts
on the given input

– H is Turing acceptable as it is accepted by U
• the input of U is a program and its input
• according to U's definition if the program halts then

U also halts

Version 47
555

The halting problem

• Proof:
– assume H is Turing decidable
– H2 = {ρ(M)ρ(M) : TM M halts on input w} is a subset of

H
– H1 = {ρ(M) : TM M stops on input ρ(M)}
– H2 can be transformed into H1 by halving the string
– H1 is a subset of H
– if H is Turing decidable → H1 also Turing decidable

• H1 corresponds to halts(X, X)

Version 47
556

The halting problem

– if H1 Turing decidable → H1
C also Turing decidable

(theorem)
• H1

C = {w : w is not the encoding of a TM, or w =
ρ(M) but M does not halt on input ρ(M)}

– corresponds to diagonal(X)
– H1

C is not even Turing acceptable
• suppose M* accepts H1

C

Version 47
557

The halting problem

• is it true that ρ(M*)  H1
C (will diagonal(diagonal)

stop?)
– ρ(M*)  H1

C

» M* does not halt on input ρ(M*) according to
the definition of H1

C

» M* accepts H1
C → M* does halt input on

ρ(M*) by the definition of acceptance

Version 47
558

The halting problem

– ρ(M*)  H1
C

» M* halt on input ρ(M*) according to the
definition of H1

C

» M* accepts H1
C → M* does not halt input on

ρ(M*) by the definition of acceptance
– contradiction reached → M* does not exist

– H1
C seems to be nicely defined by a property but its

property cannot be checked

Version 47
559

The halting problem

• Theorem: the class of Turing decidable languages is a
strict subset of the class of Turing acceptable languages

• Proof: H is Turing acceptable but not Turing decidable
• Theorem: the class of Turing acceptable languages is

not closed for complementation
• Proof: H1 is Turing acceptable but H1

C is not

Version 47
560

The halting problem

• Definition of undecidable problems: such problems for
which no algorithm exists
– no TM M exists which can decide if w is in L or not

• The most famous undecidable problem is the halting
problem
– both the TM and its input is arbitrary
– if a fixed TM is considered then it may be decidable

• Other undecidable problems:
– deciding whether multivariable polynomial equation

has a solution in integers (Hilbert's tenth problem)
– tiling problem

Summary

• The Church-Turing thesis
• Universal TM
• Unary encoding
• Binary encoding
• The halting problem

Version 47
561

The exam

• One of six initial questions:
– RG ↔ NFA (two proofs)
– NFA → DFA (two proofs)
– CFG → PDA (two proofs)

• The exam is failed if the initial question is failed

Version 47
562

The exam

• Check the download material in moodle
• Do not be surprised when I ask what grade is your aim
• Have a favorite question
• Have the lecture notes, sometimes it is enough to

explain something, so you do not have to write it down
• Be ready for questions from the last lecture too
• If you failed the exam, next time know what you did not

know before
• Be prepared for examples

Version 47
563

Version 47
564

